En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Search by event 2696 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Aléa, automates et transcendance - Adamczewski, Boris (Auteur de la Conférence) | CIRM H

Multi angle

L'étude du caractère aléatoire de la suite des chiffres de certainsnombres réels donne lieu à des problèmes classiques, comme la conjecture de normalité des nombres algébriques ou la conjecture de dimensions de Furstenberg (1969). Malheureusement, notre capacité à les appréhender demeure extrêmement limitée. Alors que les problèmes évoqués prennent naturellement place dans un contexte probabiliste ou dynamique, le langage de la théorie des automates finis permet de formuler des conjectures qui expriment les mêmes heuristiques, bien que d'une façon différente et affaiblie. Ce point de vue « automatique » trouve son origine dans des travaux de Cobham (1968) et a ensuite été développé au cours des années 1980 par des théoriciens des nombres, comme Loxton et van der Poorten ou Ku. Nishioka. Je décrirai comment ces conjectures découlent finalement de progrès récents en « méthode de Mahler » ; une méthode en théorie des nombres transcendants introduite par Mahler à la fin des années 1920. Il s'agit de travaux en collaboration avec Colin Faverjon.[-]
L'étude du caractère aléatoire de la suite des chiffres de certainsnombres réels donne lieu à des problèmes classiques, comme la conjecture de normalité des nombres algébriques ou la conjecture de dimensions de Furstenberg (1969). Malheureusement, notre capacité à les appréhender demeure extrêmement limitée. Alors que les problèmes évoqués prennent naturellement place dans un contexte probabiliste ou dynamique, le langage de la théorie des ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Subshifts are set of colorings of a group by a finite alphabet that respect local constraints, given by some forbidden patterns ode m. The asymmetric version of Lovász local lemma reveals particularly useful to prove the existence of a coloring inside a subshift, i.e. a coloring that avoids all the forbidden patterns. In this talk I will present some sufficient conditions on the set of forbidden patterns to get at least one coloring. Then we will see as an application why every group possesses a strongly aperiodic subshift (joint work with Sebastián Barbieri and Stéphan Thomassé).[-]
Subshifts are set of colorings of a group by a finite alphabet that respect local constraints, given by some forbidden patterns ode m. The asymmetric version of Lovász local lemma reveals particularly useful to prove the existence of a coloring inside a subshift, i.e. a coloring that avoids all the forbidden patterns. In this talk I will present some sufficient conditions on the set of forbidden patterns to get at least one coloring. Then we ...[+]

37B10 ; 37B50 ; 68R99

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the last 30 years, random combinatorial structures and their scaling limits have formed a flourishing area of research at the interface between probability and combinatorics. In this mini-course, I aim to show some of the beautiful theory that arises when considering scaling limits of random trees and graphs. Trees are fundamental objects in combinatorics and the enumeration of different classes of trees is a classical subject. In the first section, we will take as our basic object the genealogical tree of a critical Bienaymé-Galton-Watson branching process. (As well as having nice probabilistic properties, this class turns out to include various natural types of random combinatorial tree in disguise.) In the same way as Brownian motion is the universal scaling limit for centred random walks of finite step-size variance, it turns out that all critical Bienaymé-Galton-Watson trees with finite offspring variance have a universal scaling limit, Aldous' Brownian continuum random tree. The simplest model of a random network is the Erdôs-Rényi random graph : we take $n$ vertices, and include each possible edge independently with probability $p$. One of the most well-known features of this model is that it undergoes a phase transition. Take $p=c / n$. Then for $c<1$, the components have size $O(\log n)$, whereas for $c>1$, there is a giant component, comprising a positive fraction of the vertices, and a collection of components of size $O(\log n)$. (These statements hold with probability tending to 1 as $n \rightarrow \infty$.) In the second section, we will focus on the critical setting, $c=1$, where the largest components have size of order $n^{2 / 3}$, and are "close" to being trees, in the sense that they have only finitely many more edges than a tree with the same number of vertices would have. We will see how to use a careful comparison with a branching process in order to derive the scaling limit of the critical Erdôs-Rényi random graph. The rapidly growing field of analytic combinatorics in several variables uses tools from complex analysis, algebraic geometry, topology, and computer algebra to characterize the asymptotic properties of sequences defined by multivariate generating functions. This course will survey some of the methods in the field, with a focus on explicit results that can be used in applications across a variety of mathematical and scientific domains.[-]
In the last 30 years, random combinatorial structures and their scaling limits have formed a flourishing area of research at the interface between probability and combinatorics. In this mini-course, I aim to show some of the beautiful theory that arises when considering scaling limits of random trees and graphs. Trees are fundamental objects in combinatorics and the enumeration of different classes of trees is a classical subject. In the first ...[+]

05C80 ; 60C05 ; 60F05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I'll present two problems where data naturally present a graphical structure: the analysis of champions in a tournament and the problem of matching.
I'll present for each problem intuitive results in toy models and discuss various mathematical tools involved to prove them.
I'll also present many open problems, hopefully convincing people to jump in this growing area.

60K37 ; 60G70 ; 60K40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the last 30 years, random combinatorial structures and their scaling limits have formed a flourishing area of research at the interface between probability and combinatorics. In this mini-course, I aim to show some of the beautiful theory that arises when considering scaling limits of random trees and graphs. Trees are fundamental objects in combinatorics and the enumeration of different classes of trees is a classical subject. In the first section, we will take as our basic object the genealogical tree of a critical Bienaymé-Galton-Watson branching process. (As well as having nice probabilistic properties, this class turns out to include various natural types of random combinatorial tree in disguise.) In the same way as Brownian motion is the universal scaling limit for centred random walks of finite step-size variance, it turns out that all critical Bienaymé-Galton-Watson trees with finite offspring variance have a universal scaling limit, Aldous' Brownian continuum random tree. The simplest model of a random network is the Erdôs-Rényi random graph : we take $n$ vertices, and include each possible edge independently with probability $p$. One of the most well-known features of this model is that it undergoes a phase transition. Take $p=c / n$. Then for $c<1$, the components have size $O(\log n)$, whereas for $c>1$, there is a giant component, comprising a positive fraction of the vertices, and a collection of components of size $O(\log n)$. (These statements hold with probability tending to 1 as $n \rightarrow \infty$.) In the second section, we will focus on the critical setting, $c=1$, where the largest components have size of order $n^{2 / 3}$, and are "close" to being trees, in the sense that they have only finitely many more edges than a tree with the same number of vertices would have. We will see how to use a careful comparison with a branching process in order to derive the scaling limit of the critical Erdôs-Rényi random graph. The rapidly growing field of analytic combinatorics in several variables uses tools from complex analysis, algebraic geometry, topology, and computer algebra to characterize the asymptotic properties of sequences defined by multivariate generating functions. This course will survey some of the methods in the field, with a focus on explicit results that can be used in applications across a variety of mathematical and scientific domains.[-]
In the last 30 years, random combinatorial structures and their scaling limits have formed a flourishing area of research at the interface between probability and combinatorics. In this mini-course, I aim to show some of the beautiful theory that arises when considering scaling limits of random trees and graphs. Trees are fundamental objects in combinatorics and the enumeration of different classes of trees is a classical subject. In the first ...[+]

05C80 ; 60C05 ; 60F05

Sélection Signaler une erreur