En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Search by event 966 4 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, we investigate in a unified way the structural properties of a large class of convex regularizers for linear inverse problems. These penalty functionals are crucial to force the regularized solution to conform to some notion of simplicity/low complexity. Classical priors of this kind includes sparsity, piecewise regularity and low-rank. These are natural assumptions for many applications, ranging from medical imaging to machine learning.
imaging - image processing - sparsity - convex optimization - inverse problem - super-resolution[-]
In this talk, we investigate in a unified way the structural properties of a large class of convex regularizers for linear inverse problems. These penalty functionals are crucial to force the regularized solution to conform to some notion of simplicity/low complexity. Classical priors of this kind includes sparsity, piecewise regularity and low-rank. These are natural assumptions for many applications, ranging from medical imaging to machine ...[+]

62H35 ; 65D18 ; 94A08 ; 68U10 ; 90C31 ; 80M50 ; 47N10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The persistent homology with coefficients in a field F coincides with the same for cohomology because of duality. We propose an implementation of a recently introduced algorithm for persistent cohomology that attaches annotation vectors with the simplices. We separate the representation of the simplicial complex from the representation of the cohomology groups, and introduce a new data structure for maintaining the annotation matrix, which is more compact and reduces substancially the amount of matrix operations. In addition, we propose heuristics to simplify further the representation of the cohomology groups and improve both time and space complexities. The paper provides a theoretical analysis, as well as a detailed experimental study of our implementation and comparison with state-of-the-art software for persistent homology and cohomology.
persistent cohomology - implementation - matrix reduction - data structure - annotation - simplex tree[-]
The persistent homology with coefficients in a field F coincides with the same for cohomology because of duality. We propose an implementation of a recently introduced algorithm for persistent cohomology that attaches annotation vectors with the simplices. We separate the representation of the simplicial complex from the representation of the cohomology groups, and introduce a new data structure for maintaining the annotation matrix, which is ...[+]

68Wxx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
How much cutting is needed to simplify the topology of a surface? We provide bounds for several instances of this question, for the minimum length of topologically non-trivial closed curves, pants decompositions, and cut graphs with a given combinatorial map in triangulated combinatorial surfaces (or their dual cross-metric counterpart).
Our work builds upon Riemannian systolic inequalities, which bound the minimum length of non-trivial closed curves in terms of the genus and the area of the surface. We first describe a systematic way to translate Riemannian systolic inequalities to a discrete setting, and vice-versa. This implies a conjecture by Przytycka and Przytycki from 1993, a number of new systolic inequalities in the discrete setting, and the fact that a theorem of Hutchinson on the edge-width of triangulated surfaces and Gromov's systolic inequality for surfaces are essentially equivalent. We also discuss how these proofs generalize to higher dimensions.
Then we focus on topological decompositions of surfaces. Relying on ideas of Buser, we prove the existence of pants decompositions of length $O(g^{3/2}n^{1/2})$ for any triangulated combinatorial surface of genus g with n triangles, and describe an $O(gn)$-time algorithm to compute such a decomposition.
Finally, we consider the problem of embedding a cut graph (or more generally a cellular graph) with a given combinatorial map on a given surface. Using random triangulations, we prove (essentially) that, for any choice of a combinatorial map, there are some surfaces on which any cellular embedding with that combinatorial map has length superlinear in the number of triangles of the triangulated combinatorial surface. There is also a similar result for graphs embedded on polyhedral triangulations.
systolic geometry - computational topology - topological graph theory - graphs on surfaces - triangulations - random graphs[-]
How much cutting is needed to simplify the topology of a surface? We provide bounds for several instances of this question, for the minimum length of topologically non-trivial closed curves, pants decompositions, and cut graphs with a given combinatorial map in triangulated combinatorial surfaces (or their dual cross-metric counterpart).
Our work builds upon Riemannian systolic inequalities, which bound the minimum length of non-trivial closed ...[+]

05C10 ; 68U05 ; 53C23 ; 57M15 ; 68R10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Mirror-symmetry in images and 3D shapes - Patraucean, Viorica (Auteur de la Conférence) | CIRM

Multi angle

Several psychophysical studies stress the importance of object symmetries in human perception when dealing with tasks related to object detection and recognition. Paradoxically, state-of-the-art methods in image and D shape analysis not only they reveal very limited use of object symmetry information, but they often regard symmetries as an issue. This talk will tackle this paradox, by addressing aspects linked to symmetry detection
in images, and 3D shape matching in presence of symmetries. Specifically, a method for reducing the umber of false positives in symmetry detection in images will be presented, as well as a 3D shape matching approach that solves the ambiguity induced by intrinsic symmetries in the shape matching problem.[-]
Several psychophysical studies stress the importance of object symmetries in human perception when dealing with tasks related to object detection and recognition. Paradoxically, state-of-the-art methods in image and D shape analysis not only they reveal very limited use of object symmetry information, but they often regard symmetries as an issue. This talk will tackle this paradox, by addressing aspects linked to symmetry detection
in images, ...[+]

68U10

Sélection Signaler une erreur