m

F Nous contacter


0

Documents : Post-edited  Conférences Vidéo Chapitrées | enregistrements trouvés : 200

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Le troisième groupe de cohomologie non ramifiée d'une variété lisse, à coefficients dans les racines de l'unité tordues deux fois, intervient dans plusieurs articles récents, en particulier en relation avec le groupe de Chow de codimension 2. On fera un tour d'horizon : espaces homogènes de groupes algébriques linéaires; variétés rationnellement connexes sur les complexes; images d'applications cycle sur les complexes, sur un corps fini, sur un corps de nombres.
Le troisième groupe de cohomologie non ramifiée d'une variété lisse, à coefficients dans les racines de l'unité tordues deux fois, intervient dans plusieurs articles récents, en particulier en relation avec le groupe de Chow de codimension 2. On fera un tour d'horizon : espaces homogènes de groupes algébriques linéaires; variétés rationnellement connexes sur les complexes; images d'applications cycle sur les complexes, sur un corps fini, sur un ...

19E15 ; 14C35 ; 14C25 ; 14E08

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

It is known that in 3D exterior domains Ω with the compact smooth boundary $\partial \Omega$, two spaces $X^{r}_{har}\left ( \Omega \right )$ and $V^{r}_{har}\left ( \Omega \right )$ of $L^{r}$-harmonic vector fields $h$ with $h\cdot v\mid _{\partial \Omega }= 0$ and $h\times v\mid _{\partial \Omega }= 0$ are both of finite dimensions, where $v$ denotes the unit outward normal to $\partial \Omega$. We prove that for every $L^{r}$-vector field $u$, there exist $h\in X^{r}_{har}\left ( \Omega \right )$, $w\in H^{1,r}\left ( \Omega \right )^{3}$ with div $w= 0$ and $p\in H^{1,r}\left ( \Omega \right )$ such that $u$ is uniquely decomposed as $u= h$ + rot $w$ + $\bigtriangledown p$.
On the other hand, if for the given $L^{r}$-vector field $u$ we choose its harmonic part $h$ from $V^{r}_{har}\left ( \Omega \right )$, then we have a similar decomposition to above, while the unique expression of $u$ holds only for $1< r< 3$. Furthermore, the choice of $p$ in $H^{1,r}\left ( \Omega \right )$ is determined in accordance with the threshold $r= 3/2$.
Our result is based on the joint work with Matthias Hieber, Anton Seyferd (TU Darmstadt), Senjo Shimizu (Kyoto Univ.) and Taku Yanagisawa (Nara Women Univ.).
It is known that in 3D exterior domains Ω with the compact smooth boundary $\partial \Omega$, two spaces $X^{r}_{har}\left ( \Omega \right )$ and $V^{r}_{har}\left ( \Omega \right )$ of $L^{r}$-harmonic vector fields $h$ with $h\cdot v\mid _{\partial \Omega }= 0$ and $h\times v\mid _{\partial \Omega }= 0$ are both of finite dimensions, where $v$ denotes the unit outward normal to $\partial \Omega$. We prove that for every $L^{r}$-vector field $u...

35B45 ; 35J25 ; 35Q30 ; 58A10 ; 35A25

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

For surfaces immersed into a compact Riemannian manifold, we consider the curvature functional given by the $L^{2}$ integral of the second fundamental form. We discuss an area bound in terms of the energy, with application to the existence of minimizers. This is joint work with V. Bangert.

53C44 ; 53C45

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  25+ years of wavelets for PDEs
Kunoth, Angela (Auteur de la Conférence) | CIRM (Editeur )

Ingrid Daubechies' construction of orthonormal wavelet bases with compact support published in 1988 started a general interest to employ these functions also for the numerical solution of partial differential equations (PDEs). Concentrating on linear elliptic and parabolic PDEs, I will start from theoretical topics such as the well-posedness of the problem in appropriate function spaces and regularity of solutions and will then address quality and optimality of approximations and related concepts from approximation the- ory. We will see that wavelet bases can serve as a basic ingredient, both for the theory as well as for algorithmic realizations. Particularly for situations where solutions exhibit singularities, wavelet concepts enable adaptive appproximations for which convergence and optimal algorithmic complexity can be established. I will describe corresponding implementations based on biorthogonal spline-wavelets.
Moreover, wavelet-related concepts have triggered new developments for efficiently solving complex systems of PDEs, as they arise from optimization problems with PDEs.
Ingrid Daubechies' construction of orthonormal wavelet bases with compact support published in 1988 started a general interest to employ these functions also for the numerical solution of partial differential equations (PDEs). Concentrating on linear elliptic and parabolic PDEs, I will start from theoretical topics such as the well-posedness of the problem in appropriate function spaces and regularity of solutions and will then address quality ...

65T60 ; 94A08 ; 65N12 ; 65N30 ; 49J20

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

I shall classify current approaches to multiple inferences according to goals, and discuss the basic approaches being used. I shall then highlight a few challenges that await our attention : some are simple inequalities, others arise in particular applications.

62J15 ; 62P10

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In this talk we present a inequality obtained with Jérôme Le Rousseau, for sum of eigenfunctions for bi-Laplace operator with clamped boundary condition. These boundary conditions do not allow to reduce the problem for a Laplacian with adapted boundary condition. The proof follow the strategy used for Laplacian, namely we consider a problem with an extra variable and we prove Carleman estimates for this new problem. The main difficulty is to obtain a Carleman estimate up to the boundary.
In this talk we present a inequality obtained with Jérôme Le Rousseau, for sum of eigenfunctions for bi-Laplace operator with clamped boundary condition. These boundary conditions do not allow to reduce the problem for a Laplacian with adapted boundary condition. The proof follow the strategy used for Laplacian, namely we consider a problem with an extra variable and we prove Carleman estimates for this new problem. The main difficulty is to ...

35B45 ; 35S15 ; 93B05 ; 93B07

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  A universal hypercyclic representation
Glasner, Eli (Auteur de la Conférence) | CIRM (Editeur )

For any countable group, and also for any locally compact second countable, compactly generated topological group, $G$, there exists a "universal" hypercyclic representation on a Hilbert space, in the sense that it simultaneously models every possible ergodic probability measure preserving free action of $G$. I will discuss the original proof of this theorem (a joint work with Benjy Weiss) and then, at the end of the talk, say some words about the development of this idea and its applications as expounded in a subsequent work of Sophie Grivaux.
For any countable group, and also for any locally compact second countable, compactly generated topological group, $G$, there exists a "universal" hypercyclic representation on a Hilbert space, in the sense that it simultaneously models every possible ergodic probability measure preserving free action of $G$. I will discuss the original proof of this theorem (a joint work with Benjy Weiss) and then, at the end of the talk, say some words about ...

37A15 ; 37A05 ; 37A25 ; 37A30 ; 47A16 ; 47A67 ; 47D03

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The alternating direction method of multipliers (ADMM) is an optimization tool of choice for several imaging inverse problems, namely due its flexibility, modularity, and efficiency. In this talk, I will begin by reviewing our earlier work on using ADMM to deal with classical problems such as deconvolution, inpainting, compressive imaging, and how we have exploited its flexibility to deal with different noise models, including Gaussian, Poissonian, and multiplicative, and with several types of regularizers (TV, frame-based analysis, synthesis, or combinations thereof). I will then describe more recent work on using ADMM for other problems, namely blind deconvolution and image segmentation, as well as very recent work where ADMM is used with plug-in learned denoisers to achieve state-of-the-art results in class-specific image deconvolution. Finally, on the theoretical front, I will describe very recent work on tackling the infamous problem of how to adjust the penalty parameter of ADMM.
The alternating direction method of multipliers (ADMM) is an optimization tool of choice for several imaging inverse problems, namely due its flexibility, modularity, and efficiency. In this talk, I will begin by reviewing our earlier work on using ADMM to deal with classical problems such as deconvolution, inpainting, compressive imaging, and how we have exploited its flexibility to deal with different noise models, including Gaussian, ...

65J22 ; 65K10 ; 65T60 ; 94A08

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Déléguer à une machine l'affectation des bacheliers dans le supérieur pose un certain nombre de questions : quels règles souhaite-t-on pour l'accès au supérieur ? Quels sont alors les objectifs assignés à la machine ? Quel algorithme permet de les atteindre ? Comment permettre à tous les citoyens de vérifier une exécution de l'algorithme ? On verra rapidement quels faux et vrais problèmes posait APB et pose Parcoursup. Je présenterai l'algorithme de Gale-Shapley et je montrerai comment on peut vérifier a posteriori que cet algorithme a été exécuté correctement, de façon plus ou moins complète selon le degré d'anonymat des candidatures et des classements.

In France, matching students who have passed the baccalaureat to higher education is a computer-based process. A new process is being used this year. Some questions arise: what are the rules that determine access to higher education? What goal is the computer-based process supposed to be aimed at? By what means? How are citizens allowed to check that the process runs smoothly and gives equitable results? This talk reviews some of the issues raised by both the former and the new processes, introduces the Gale-Shapley algorithm and explains how a run of the process can be independently verified.
Déléguer à une machine l'affectation des bacheliers dans le supérieur pose un certain nombre de questions : quels règles souhaite-t-on pour l'accès au supérieur ? Quels sont alors les objectifs assignés à la machine ? Quel algorithme permet de les atteindre ? Comment permettre à tous les citoyens de vérifier une exécution de l'algorithme ? On verra rapidement quels faux et vrais problèmes posait APB et pose Parcoursup. Je présenterai l'...

68Q25 ; 91B68 ; 05D15

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Algebraicity of the metric tangent cones
Wang, Xiaowei (Auteur de la Conférence) | CIRM (Editeur )

We proved that any K-semistable log Fano cone admits a special degeneration to a uniquely determined K-polystable log Fano cone. This confirms a conjecture of Donaldson-Sun stating that the metric tangent cone of any close point appearing on a Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure of the singularity. This is a joint work with Chi Li and Chenyang Xu.

14J45 ; 32Q15 ; 32Q20 ; 53C55

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

De nombreux problèmes d’optimisation sont NP-complets. Nous ne connaissons pas de problème NP-complet qui admette un algorithme optimal de résolution s’exécutant en temps polynomial en la taille de l’instance (sinon P=NP serait établi), et l’intuition commune est que P =/= NP. Pour ces problèmes, la recherche de solutions optimales peut donc être prohibitive. Les algorithmes d’approximation offrent un compromis intéressant: par définition, ils s’exécutent en temps polynomial et fournissent des solutions dont la qualité est garantie. Nous introduirons la notion d’algorithme d’approximation et de schéma d’approximation en temps polynomial, et nous illustrerons ces notions sur de nombreux exemples. Nous montrerons également comment établir qu’un problème n’admet pas d’algorithme d’approximation (à moins que P=NP), ou comment établir une borne inférieure au facteur d’approximation de tout algorithme d’approximation (sauf si P=NP).
De nombreux problèmes d’optimisation sont NP-complets. Nous ne connaissons pas de problème NP-complet qui admette un algorithme optimal de résolution s’exécutant en temps polynomial en la taille de l’instance (sinon P=NP serait établi), et l’intuition commune est que P =/= NP. Pour ces problèmes, la recherche de solutions optimales peut donc être prohibitive. Les algorithmes d’approximation offrent un compromis intéressant: par définition, ils ...

68W25 ; 68Q25 ; 68T20

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The Toeplitz square peg problem asks if every simple closed curve in the plane inscribes a square. This is known for sufficiently regular curves (e.g. polygons), but is open in general. We show that the answer is affirmative if the curve consists of two Lipschitz graphs of constant less than 1 using an integration by parts technique, and give some related problems which look more tractable.

55N45

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

I will give an introductory talk on my recent results about $p$-adic differential equations on Berkovich curves, most of them in collaboration with J. Poineau. This includes the continuity of the radii of convergence of the equation, the finiteness of their controlling graphs, the global decomposition by the radii, a bound on the size of the controlling graph, and finally the finite dimensionality of their de Rham cohomology groups, together with some local and global index theorems relating the de Rham index to the behavior of the radii of the curve. If time permits I will say a word about some recent applications to the Riemann-Hurwitz formula.
I will give an introductory talk on my recent results about $p$-adic differential equations on Berkovich curves, most of them in collaboration with J. Poineau. This includes the continuity of the radii of convergence of the equation, the finiteness of their controlling graphs, the global decomposition by the radii, a bound on the size of the controlling graph, and finally the finite dimensionality of their de Rham cohomology groups, together ...

12H25 ; 14G22

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We will give a survey of recent research progress on ancient or eternal solutions to geometric flows such as the Ricci flow, the Mean Curvature flow and the Yamabe flow.
We will address the classification of ancient solutions to parabolic equations as well as the construction of new ancient solutions from the gluing of two or more solitons.

53C44

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We will cover some of the more important results from commutative and noncommutative algebra as far as applications to automatic sequences, pattern avoidance, and related areas. Well give an overview of some applications of these areas to the study of automatic and regular sequences and combinatorics on words.

11B85 ; 68Q45 ; 68R15

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In many situations where stochastic modeling is used, one desires to choose the coefficients of a stochastic differential equation which represents the reality as simply as possible. For example one desires to approximate a diffusion model
with high complexity coefficients by a model within a class of simple diffusion models. To achieve this goal, we introduce a new Wasserstein type distance on the set of laws of solutions to d-dimensional stochastic differential equations.
This new distance $\widetilde{W}^{2}$ is defined similarly to the classical Wasserstein distance $\widetilde{W}^{2}$ but the set of couplings is restricted to the set of laws of solutions of 2$d$-dimensional stochastic differential equations. We prove that this new distance $\widetilde{W}^{2}$ metrizes the weak topology. Furthermore this distance $\widetilde{W}^{2}$ is characterized in terms of a stochastic control problem. In the case d = 1 we can construct an explicit solution. The multi-dimensional case, is more tricky and classical results do not apply to solve the HJB equation because of the degeneracy of the differential operator. Nevertheless, we prove that this HJB equation admits a regular solution.
In many situations where stochastic modeling is used, one desires to choose the coefficients of a stochastic differential equation which represents the reality as simply as possible. For example one desires to approximate a diffusion model
with high complexity coefficients by a model within a class of simple diffusion models. To achieve this goal, we introduce a new Wasserstein type distance on the set of laws of solutions to d-dimensional ...

91B70 ; 60H30 ; 60H15 ; 60J60 ; 93E20

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We prove the consistency and asymptotic normality of the Laplacian Quasi-Maximum Likelihood Estimator (QMLE) for a general class of causal time series including ARMA, AR($\infty$), GARCH, ARCH($\infty$), ARMA-GARCH, APARCH, ARMA-APARCH,..., processes. We notably exhibit the advantages (moment order and robustness) of this estimator compared to the classical Gaussian QMLE. Numerical simulations confirms the accuracy of this estimator.

62F12 ; 62M10

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Let $G$ be a torsion-free hyperbolic group, let $S$ be a finite generating set of $G$, and let $f$ be an automorphism of $G$. We want to understand the possible growth types for the word length of $f^n(g)$, where $g$ is an element of $G$. Growth was completely described by Thurston when $G$ is the fundamental group of a hyperbolic surface, and can be understood from Bestvina-Handel's work on train-tracks when $G$ is a free group. We address the general case of a torsion-free hyperbolic group $G$; we show that every element in $G$ has a well-defined exponential growth rate under iteration of $f$, and that only finitely many exponential growth rates arise as $g$ varies in $G$. In addition, we show the following dichotomy: every element of $G$ grows either exponentially fast or polynomially fast under iteration of $f$.
This is a joint work with Rémi Coulon, Arnaud Hilion and Gilbert Levitt.
Let $G$ be a torsion-free hyperbolic group, let $S$ be a finite generating set of $G$, and let $f$ be an automorphism of $G$. We want to understand the possible growth types for the word length of $f^n(g)$, where $g$ is an element of $G$. Growth was completely described by Thurston when $G$ is the fundamental group of a hyperbolic surface, and can be understood from Bestvina-Handel's work on train-tracks when $G$ is a free group. We address the ...

57M07 ; 20E06 ; 20F34 ; 20F65 ; 20E36 ; 20F67

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In the 80's Beauville generalized several foundational results of Nikulin on automorphism groups of K3 surfaces to hyperkähler manifolds. Since then the study of automorphism groups of hyperkähler manifolds and in particular of hyperkähler fourfolds got very much attention. I will present some classification results for automorphisms on hyperkähler fourfolds that are deformation equivalent to the Hilbert scheme of two points on a K3 surface and describe some explicit examples. I will give particular attention to double EPW sextics, that admit in a natural way a non-symplectic involution. Time permitting I will show how the rich geometry of double EPW sextics has an important connection to a classical question of U. Morin (1930).
In the 80's Beauville generalized several foundational results of Nikulin on automorphism groups of K3 surfaces to hyperkähler manifolds. Since then the study of automorphism groups of hyperkähler manifolds and in particular of hyperkähler fourfolds got very much attention. I will present some classification results for automorphisms on hyperkähler fourfolds that are deformation equivalent to the Hilbert scheme of two points on a K3 surface and ...

14J50 ; 14J28 ; 14J35 ; 14J70 ; 14M15 ; 14N20

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux problème de Ulam-Hammersley, qui consiste à étudier la longueur d'une plus longue sous-suite croissante d'une permutation uniforme de {1,...,n}. Il est en fait fructueux de travailler avec une version "poissonisée" du problème, où la taille n est tirée selon une loi de Poisson, dont on fera tendre le paramètre vers l'infini afin d'étudier les asymptotiques.
Dans la première séance, nous verrons que la mesure de Plancherel poissonisée est en fait un processus déterminantal, dont le noyau de corrélation fait intervenir les fonctions de Bessel. Nous utiliserons pour cela le formalisme de l'espace de Fock fermionique. (Toutes les notions nécessaires seront introduites au fur et à mesure, de la manière la plus élémentaire possible.)
Dans la seconde séance, nous étudierons les différentes asymptotiques du noyau de corrélation, par une application élégante de la méthode du col due à Okounkov et Reshetikhin. Nous verrons en particulier apparaître un phénomène de forme-limite, le noyau sinus discret dans le cas des limites "bulk" et le noyau d'Airy dans la limite "edge". In fine, nous aboutirons à une preuve du théorème de Baik-Deift-Johansson (1998) énonçant que les fluctuations de la longueur d'une plus longue sous-suite croissante d'une permutation uniforme ont asymptotiquement la même distribution que la plus grande valeur propre d'une matrice hermitienne aléatoire.
Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux ...

05A17 ; 05E10 ; 60C05 ; 60G55

Z