m

F Nous contacter


0

Documents : Multi angle  Conférences Vidéo | enregistrements trouvés : 200

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Zeros, moments and determinants
... (Auteur de la Conférence) | ... (Editeur )

For 20 years we have known that average values of characteristic polynomials of random unitary matrices provide a good model for moments of the Riemann zeta function. Now we consider mixed moments of characteristic polynomials and their derivatives, calculations which are motivated by questions on the distribution of zeros of the derivative of the Riemann zeta function.

15B52 ; 11M26 ; 11M06

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  When J. Ginibre met E. Schrödinger
... (Auteur de la Conférence) | ... (Editeur )

The real Ginibre ensemble consists of square real matrices whose entries are i.i.d. standard normal random variables. In sharp contrast to the complex and quaternion Ginibre ensemble, real eigenvalues in the real Ginibre ensemble attain positive likelihood. In turn, the spectral radius of a real Ginibe matrix follows a different limiting law for purely real eigenvalues than for non-real ones. Building on previous work by Rider, Sinclair and Poplavskyi, Tribe, Zaboronski, we will show that the limiting distribution of the largest real eigenvalue admits a closed form expression in terms of a distinguished solution to an inverse scattering problem for the Zakharov-Shabat system. This system is directly related to several of the most interesting nonlinear evolution equations in 1+1 dimensions which are solvable by the inverse scattering method, for instance the nonlinear Schr¨odinger equation. The results of this talk are based on the recent preprint arXiv:1808.02419, joint with Jinho Baik.
The real Ginibre ensemble consists of square real matrices whose entries are i.i.d. standard normal random variables. In sharp contrast to the complex and quaternion Ginibre ensemble, real eigenvalues in the real Ginibre ensemble attain positive likelihood. In turn, the spectral radius of a real Ginibe matrix follows a different limiting law for purely real eigenvalues than for non-real ones. Building on previous work by Rider, Sinclair and ...

60B20 ; 45M05 ; 60G70

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Cournot Centre session devoted to the transformations that took place in mathematical economics during the interwar period.

01A60 ; 62P20 ; 91BXX

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Virtual element approximation of magnetostatic
... (Auteur de la Conférence) | ... (Editeur )

We present a lowest order Serendipity Virtual Element method, and show its use for the numerical solution of linear magneto-static problems in three dimensions. The method can be applied to very general decompositions of the computational domain (as is natural for Virtual Element Methods) and uses as unknowns the (constant) tangential component of the magnetic eld H on each edge, and the vertex values of the Lagrange multiplier p (used to enforce the solenoidality of the magnetic induction B = µH). In this respect the method can be seen as the natural generalization of the lowest order Edge Finite Element Method (the so-called ”first kind N´ed´elec” elements) to polyhedra of almost arbitrary shape, and as we show on some numerical examples it exhibits very good accuracy (for being a lowest order element) and excellent robustness with respect to distortions. Hints on a whole family of elements will also be given.
We present a lowest order Serendipity Virtual Element method, and show its use for the numerical solution of linear magneto-static problems in three dimensions. The method can be applied to very general decompositions of the computational domain (as is natural for Virtual Element Methods) and uses as unknowns the (constant) tangential component of the magnetic eld H on each edge, and the vertex values of the Lagrange multiplier p (used to ...

65N30 ; 65N12

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Plans de gestion des données (DMP)
OPIDoR (DMP OPIdoR, Cat opidOr, Datacite) et Doranum.

68M11 ; 68P05

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

I will discuss a joint work with Jose Canizo, Cao Chuqi and Havva Yolda. I will introduce Harris’s theorem which is a classical theorem from the study of Markov Processes. Then I will discuss how to use this to show convergence to equilibrium for some spatially inhomogeneous kinetic equations involving jumps including jump processes which approximate diffusion or fractional diffusion in velocity. This is the situation in which the tools of ’Hypocoercivity’ are used. I will discuss the connections to hypocoercivity theory and possible advantages and disadvantages of approaches via Harris’s theorem.
I will discuss a joint work with Jose Canizo, Cao Chuqi and Havva Yolda. I will introduce Harris’s theorem which is a classical theorem from the study of Markov Processes. Then I will discuss how to use this to show convergence to equilibrium for some spatially inhomogeneous kinetic equations involving jumps including jump processes which approximate diffusion or fractional diffusion in velocity. This is the situation in which the tools of ...

35Q20 ; 35B40 ; 60J75 ; 82C40

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Universality in tiling models
... (Auteur de la Conférence) | ... (Editeur )

We consider the domino tilings of a large class of Aztec rectangles. For an appropriate scaling limit, we show that, the disordered region consists of roughly two arctic circles connected with a finite number of paths. The statistics of these paths is governed by a kernel, also found in other models (universality). The kernel thus obtained is believed to be a master kernel, from which the kernels, associated with critical points, can all be derived.
We consider the domino tilings of a large class of Aztec rectangles. For an appropriate scaling limit, we show that, the disordered region consists of roughly two arctic circles connected with a finite number of paths. The statistics of these paths is governed by a kernel, also found in other models (universality). The kernel thus obtained is believed to be a master kernel, from which the kernels, associated with critical points, can all be ...

60B20 ; 60D05

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Siegel introduced generalised theta series to study representation numbers of quadratic forms. Given an integral lattice $L$ with quadratic form $q$, Siegel’s degree $n$ theta series attached to $L$ has a Fourier expansion supported on $n$-dimensional lattices, with Fourier coefficients that tells us how many times $L$ represents any given $n$-dimensional lattice. Siegel proved that this theta series is a type of automorphic form.
In this talk we explore how the theory of automorphic forms, together with the theory of quadratic forms, helps us understand these representation numbers. We reveal arithmetic relations between ”average” representation numbers (where we average over a genus), and finally we give an explicit formula for these average representation numbers in terms of the Fourier coefficients of Siegel Eisenstein series. In the case that $n = 1$ (meaning we are looking at how often $L$ represents an integer) this yields explicit numerical formulas for these average representation numbers.
Siegel introduced generalised theta series to study representation numbers of quadratic forms. Given an integral lattice $L$ with quadratic form $q$, Siegel’s degree $n$ theta series attached to $L$ has a Fourier expansion supported on $n$-dimensional lattices, with Fourier coefficients that tells us how many times $L$ represents any given $n$-dimensional lattice. Siegel proved that this theta series is a type of automorphic form.
In this talk ...

11F27 ; 11F30 ; 11F46

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Transfer operators for Sinai billiards - lecture 3
... (Auteur de la Conférence) | ... (Editeur )

We will discuss an approach to the statistical properties of two-dimensional dispersive billiards (mostly discrete-time) using transfer operators acting on anisotropic Banach spaces of distributions. The focus of this part will be our recent work with Mark Demers on the measure of maximal entropy but we will also survey previous results by Demers, Zhang, Liverani, etc on the SRB measure.

37D50 ; 37C30 ; 37B40

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Transfer operators for Sinai billiards - lecture 2
... (Auteur de la Conférence) | ... (Editeur )

We will discuss an approach to the statistical properties of two-dimensional dispersive billiards (mostly discrete-time) using transfer operators acting on anisotropic Banach spaces of distributions. The focus of this part will be our recent work with Mark Demers on the measure of maximal entropy but we will also survey previous results by Demers, Zhang, Liverani, etc on the SRB measure.

37D50 ; 37C30 ; 37B40

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Transfer operators for Sinai billiards - lecture 1
... (Auteur de la Conférence) | ... (Editeur )

We will discuss an approach to the statistical properties of two-dimensional dispersive billiards (mostly discrete-time) using transfer operators acting on anisotropic Banach spaces of distributions. The focus of this part will be our recent work with Mark Demers on the measure of maximal entropy but we will also survey previous results by Demers, Zhang, Liverani, etc on the SRB measure.

37D50 ; 37C30 ; 37B40

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Transfer operators for Anosov flows - lecture 3
... (Auteur de la Conférence) | ... (Editeur )

We present a functional-analytic approach to the study of transfer operators for Anosov flows. To study transfer operators, a basic idea in semi-classical analysis suggests to look at the action of the flow on the cotangent bundle. Though this idea is simple and intuitive (as we will explain in the lectures), we need some framework to make it work. In the lectures, we present such a framework based on a wave-packet transform.

37D20 ; 37C30

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Transfer operators for Anosov flows - lecture 2
... (Auteur de la Conférence) | ... (Editeur )

We present a functional-analytic approach to the study of transfer operators for Anosov flows. To study transfer operators, a basic idea in semi-classical analysis suggests to look at the action of the flow on the cotangent bundle. Though this idea is simple and intuitive (as we will explain in the lectures), we need some framework to make it work. In the lectures, we present such a framework based on a wave-packet transform.

37D20 ; 37C30

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Transfer operators for Anosov flows - lecture 1
... (Auteur de la Conférence) | ... (Editeur )

We present a functional-analytic approach to the study of transfer operators for Anosov flows. To study transfer operators, a basic idea in semi-classical analysis suggests to look at the action of the flow on the cotangent bundle. Though this idea is simple and intuitive (as we will explain in the lectures), we need some framework to make it work. In the lectures, we present such a framework based on a wave-packet transform.

37D20 ; 37C30

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Transfer matrix approach to 1d random band matrices
... (Auteur de la Conférence) | ... (Editeur )

Random band matrices (RBM) are natural intermediate models to study eigenvalue statistics and quantum propagation in disordered systems, since they interpolate between mean-field type Wigner matrices and random Schrodinger operators. In particular, RBM can be used to model the Anderson metal-insulator phase transition (crossover) even in 1d. In this talk we will discuss some recent progress in application of the supersymmetric method (SUSY) and transfer matrix approach to the analysis of local spectral characteristics of some specific types of 1d RBM. Joint project with Maria Shcherbina.
Random band matrices (RBM) are natural intermediate models to study eigenvalue statistics and quantum propagation in disordered systems, since they interpolate between mean-field type Wigner matrices and random Schrodinger operators. In particular, RBM can be used to model the Anderson metal-insulator phase transition (crossover) even in 1d. In this talk we will discuss some recent progress in application of the supersymmetric method ...

60B20 ; 15B52

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Transductions - Partie 2
... (Auteur de la Conférence) | ... (Editeur )

Après une introduction générale présentant les principaux modèles et problèmes étudiés, nous étudierons plus précisément trois sujets qui permettront d’illustrer des propriétés algorithmiques, des aspects algébriques et logiques de cette théorie :
- caractérisation, décision et minimisation des transducteurs séquentiels ;
- équivalence et fonctionnalité de transducteurs : de l’indécidabilité à la décidabilité ;
- présentation logique des transducteurs, et clôture par composition.
Après une introduction générale présentant les principaux modèles et problèmes étudiés, nous étudierons plus précisément trois sujets qui permettront d’illustrer des propriétés algorithmiques, des aspects algébriques et logiques de cette théorie :
- caractérisation, décision et minimisation des transducteurs séquentiels ;
- équivalence et fonctionnalité de transducteurs : de l’indécidabilité à la décidabilité ;
- présentation logique des ...

68Q45 ; 03D05 ; 03B25

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Transductions - Partie 1
... (Auteur de la Conférence) | ... (Editeur )

Après une introduction générale présentant les principaux modèles et problèmes étudiés, nous étudierons plus précisément trois sujets qui permettront d’illustrer des propriétés algorithmiques, des aspects algébriques et logiques de cette théorie :
- caractérisation, décision et minimisation des transducteurs séquentiels ;
- équivalence et fonctionnalité de transducteurs : de l’indécidabilité à la décidabilité ;
- présentation logique des transducteurs, et clôture par composition.
Après une introduction générale présentant les principaux modèles et problèmes étudiés, nous étudierons plus précisément trois sujets qui permettront d’illustrer des propriétés algorithmiques, des aspects algébriques et logiques de cette théorie :
- caractérisation, décision et minimisation des transducteurs séquentiels ;
- équivalence et fonctionnalité de transducteurs : de l’indécidabilité à la décidabilité ;
- présentation logique des ...

68Q45 ; 03D05 ; 03B25

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Topics on $K3$ surfaces - Lecture 6: Classification
... (Auteur de la Conférence) | ... (Editeur )

Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* $K3$ surfaces in the Enriques-Kodaira classification.
* Examples; Kummer surfaces.
* Basic properties of $K3$ surfaces; Torelli theorem and surjectivity of the period map.
* The study of automorphisms on $K3$ surfaces: basic facts, examples.
* Symplectic automorphisms of $K3$ surfaces, classification, moduli spaces.
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* ...

14J10 ; 14J28 ; 14J50 ; 14C20 ; 14C22 ; 14J27 ; 14L30

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* $K3$ surfaces in the Enriques-Kodaira classification.
* Examples; Kummer surfaces.
* Basic properties of $K3$ surfaces; Torelli theorem and surjectivity of the period map.
* The study of automorphisms on $K3$ surfaces: basic facts, examples.
* Symplectic automorphisms of $K3$ surfaces, classification, moduli spaces.
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* ...

14J10 ; 14J28 ; 14J50 ; 14C20 ; 14C22 ; 14J27 ; 14L30

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* $K3$ surfaces in the Enriques-Kodaira classification.
* Examples; Kummer surfaces.
* Basic properties of $K3$ surfaces; Torelli theorem and surjectivity of the period map.
* The study of automorphisms on $K3$ surfaces: basic facts, examples.
* Symplectic automorphisms of $K3$ surfaces, classification, moduli spaces.
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* ...

14J10 ; 14J28 ; 14J50 ; 14C20 ; 14C22 ; 14J27 ; 14L30

Z