m

F Nous contacter


0

Documents  | enregistrements trouvés : 200

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In this talk I will describe a systematic investigation into congruences between the mod $p$ torsion modules of elliptic curves defined over $\mathbb{Q}$. For each such curve $E$ and prime $p$ the $p$-torsion $E[p]$ of $E$, is a 2-dimensional vector space over $\mathbb{F}_{p}$ which carries a Galois action of the absolute Galois group $G_{\mathbb{Q}}$. The structure of this $G_{\mathbb{Q}}$-module is very well understood, thanks to the work of J.-P. Serre and others. When we say the two curves $E$ and $E'$ are ”congruent” we mean that $E[p]$ and $E'[p]$ are isomorphic as $G_{\mathbb{Q}}$-modules. While such congruences are known to exist for all primes up to 17, the Frey-Mazur conjecture states that p is bounded: more precisely, that there exists $B$ > 0 such that if $p > B$ and $E[p]$ and $E'[p]$ are isomorphic then $E$ and $E'$ are isogenous. We report on work toward establishing such a bound for the elliptic curves in the LMFDB database. Secondly, we describe methods for determining whether or not a given isomorphism between $E[p]$ and $E'[p]$ is symplectic (preserves the Weil pairing) or antisymplectic, and report on the results of applying these methods to the curves in the database.
This is joint work with Nuno Freitas (Warwick).
In this talk I will describe a systematic investigation into congruences between the mod $p$ torsion modules of elliptic curves defined over $\mathbb{Q}$. For each such curve $E$ and prime $p$ the $p$-torsion $E[p]$ of $E$, is a 2-dimensional vector space over $\mathbb{F}_{p}$ which carries a Galois action of the absolute Galois group $G_{\mathbb{Q}}$. The structure of this $G_{\mathbb{Q}}$-module is very well understood, thanks to the work of ...

11G05 ; 14H52 ; 11A07

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

(joint work with Michael Handel) $Out(F_{n}) := Aut(F_{n})/Inn(F_{n})$ denotes the outer automorphism group of the rank n free group $F_{n}$. An element $f$ of $Out(F_{n})$ is polynomially growing if the word lengths of conjugacy classes in Fn grow at most polynomially under iteration by $f$. The existence in $Out(F_{n}), n > 2$, of elements with non-linear polynomial growth is a feature of $Out(F_{n})$ not shared by mapping class groups of surfaces.
To avoid some finite order behavior, we restrict attention to the subset $UPG(F_{n})$ of $Out(F_{n})$ consisting of polynomially growing elements whose action on $H_{1}(F_{n}, Z)$ is unipotent. In particular, if $f$ is polynomially growing and acts trivially on $H_{1}(F_{n}, Z_{3})$ then $f $ is in $UPG(F_{n})$ and further every polynomially growing element of $Out(F_{n})$ has a power that is in $UPG(F_{n})$. The goal of the talk is to describe an algorithm to decide given $f,g$ in $UPG(F_{n})$ whether or not there is h in $Out(F_{n})$ such that $hf h^{-1} = g$.
The conjugacy problem for linearly growing elements of $UPG(F_{n})$ was solved by Cohen-Lustig. Krstic-Lustig-Vogtmann solved the case of linearly growing elements of $Out(F_{n})$.
A key technique is our use of train track representatives for elements of $Out(F_{n})$, a method pioneered by Bestvina-Handel in the early 1990s that has since been ubiquitous in the study of $Out(F_{n})$.
(joint work with Michael Handel) $Out(F_{n}) := Aut(F_{n})/Inn(F_{n})$ denotes the outer automorphism group of the rank n free group $F_{n}$. An element $f$ of $Out(F_{n})$ is polynomially growing if the word lengths of conjugacy classes in Fn grow at most polynomially under iteration by $f$. The existence in $Out(F_{n}), n > 2$, of elements with non-linear polynomial growth is a feature of $Out(F_{n})$ not shared by mapping class groups of ...

20F65 ; 57M07

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Markov chain Monte Carlo methods have become ubiquitous across science and engineering to model dynamics and explore large combinatorial sets. Over the last 20 years there have been tremendous advances in the design and analysis of efficient sampling algorithms for this purpose. One of the striking discoveries has been the realization that many natural Markov chains undergo phase transitions, whereby they abruptly change from being efficient to inefficient as some parameter of the system is modified. Generating functions can offer an alternative approach to sampling and they play a role in showing when certain Markov chains are efficient or not. We will explore the interplay between Markov chains, generating functions, and phase transitions for a variety of combinatorial problems, including graded posets, Boltzmann sampling, and 3-colorings on $Z^{2}$.
Markov chain Monte Carlo methods have become ubiquitous across science and engineering to model dynamics and explore large combinatorial sets. Over the last 20 years there have been tremendous advances in the design and analysis of efficient sampling algorithms for this purpose. One of the striking discoveries has been the realization that many natural Markov chains undergo phase transitions, whereby they abruptly change from being efficient to ...

60C05 ; 68R05 ; 60J20

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We give some results about tree-indexed random walks aka branching random walks. In particular, we investigate the growth of the maximum of such a walk.
Based on joint work with Piotr Dyszewski and Thomas Hofelsauer.

60G50 ; 60J10 ; 60J80

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Descent in Bruhat-Tits theory
Prasad, Gopal (Auteur de la Conférence) | CIRM (Editeur )

Bruhat-Tits theory applies to a semisimple group G, defined over an henselian discretly valued field K, such that G admits a Borel K-subgroup after an extension of K. The construction of the theory goes then by a deep Galois descent argument for the building and also for the parahoric group scheme. In the case of unramified extension, that descent has been achieved by Bruhat-Tits at the end of [BT2]. The tamely ramified case is due to G. Rousseau [R]. Recently, G. Prasad found a new way to investigate the descent part of the theory. This is available in the preprints [Pr1, Pr2] dealing respectively with the unramified case and the tamely ramified case. It is much shorter and the method is based more on fine geometry of the building (e.g. galleries) than algebraic groups techniques.
Bruhat-Tits theory applies to a semisimple group G, defined over an henselian discretly valued field K, such that G admits a Borel K-subgroup after an extension of K. The construction of the theory goes then by a deep Galois descent argument for the building and also for the parahoric group scheme. In the case of unramified extension, that descent has been achieved by Bruhat-Tits at the end of [BT2]. The tamely ramified case is due to G. ...

20G15 ; 20E42 ; 51E24

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Twistor theory for LQG
Eastwood, Michael (Auteur de la Conférence) | CIRM (Editeur )

Twistor Theory was proposed in the late 1960s by Roger Penrose as a potential geometric unification of general relativity and quantum mechanics. During the past 50 years, there have been many mathematical advances and achievements in twistor theory. In physics, however, there are aspirations yet to be realised. Twistor Theory and Loop Quantum Gravity (LQG) share a common background. Their aims are very much related. Is there more to it? This talk will sketch the geometry and symmetry behind twistor theory with the hope that links with LQG can be usefully strengthened. We believe there is something significant going on here: what could it be?
Twistor Theory was proposed in the late 1960s by Roger Penrose as a potential geometric unification of general relativity and quantum mechanics. During the past 50 years, there have been many mathematical advances and achievements in twistor theory. In physics, however, there are aspirations yet to be realised. Twistor Theory and Loop Quantum Gravity (LQG) share a common background. Their aims are very much related. Is there more to it? This ...

32L25 ; 53A30 ; 53C28

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

This talk focuses on challenges that we address when designing linear solvers that aim at achieving scalability on large scale computers, while also preserving numerical robustness. We will consider preconditioned Krylov subspace solvers. Getting scalability relies on reducing global synchronizations between processors, while also increasing the arithmetic intensity on one processor. Achieving robustness relies on ensuring that the condition number of the preconditioned matrix is bounded. We will discuss two different approaches for this. The first approach relies on enlarged Krylov subspace methods that aim at computing an enlarged subspace and obtain a faster convergence of the iterative method. The second approach relies on a multilevel Schwarz preconditioner, a multilevel extension of the GenEO preconditioner, that is basedon constructing robustly a hierarchy of coarse spaces. Numerical results on large scale computers, in particular for linear systems arising from solving linear elasticity problems, will discuss the efficiency of the proposed methods.
This talk focuses on challenges that we address when designing linear solvers that aim at achieving scalability on large scale computers, while also preserving numerical robustness. We will consider preconditioned Krylov subspace solvers. Getting scalability relies on reducing global synchronizations between processors, while also increasing the arithmetic intensity on one processor. Achieving robustness relies on ensuring that the condition ...

65F08 ; 65F10 ; 65N55

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The productivity of the $\kappa $-chain condition, where $\kappa $ is a regular, uncountable cardinal, has been the focus of a great deal of set-theoretic research. In the 1970’s, consistent examples of $kappa-cc$ posets whose squares are not $\kappa-cc$ were constructed by Laver, Galvin, Roitman and Fleissner. Later, ZFC examples were constructed by Todorcevic, Shelah, and others. The most difficult case, that in which $\kappa = \aleph{_2}$, was resolved by Shelah in 1997.
In the first part of this talk, we shall present analogous results regarding the infinite productivity of chain conditions stronger than $\kappa-cc$. In particular, for any successor cardinal $\kappa$, we produce a ZFC example of a poset with precaliber $\kappa$ whose $\omega ^{th}$ power is not $\kappa-cc$. To do so, we introduce and study the principle $U(\kappa , \mu , \theta , \chi )$ asserting the existence of a coloring $c:\left [ \kappa \right ]^{2}\rightarrow \theta $ satisfying a strong unboundedness condition.
In the second part of this talk, we shall introduce and study a new cardinal invariant $\chi \left ( \kappa \right )$ for a regular uncountable cardinal $\kappa$ . For inaccessible $\kappa$, $\chi \left ( \kappa \right )$ may be seen as a measure of how far away $\kappa$ is from being weakly compact. We shall prove that if $\chi \left ( \kappa \right )> 1$, then $\chi \left ( \kappa \right )=max(Cspec(\kappa ))$, where:
(1) Cspec$(\kappa)$ := {$\chi (\vec{C})\mid \vec{C}$ is a sequence over $\kappa$} $\setminus \omega$, and
(2) $\chi \left ( \vec{C} \right )$ is the least cardinal $\chi \leq \kappa $ such that there exist $\Delta\in\left [ \kappa \right ]^{\kappa }$ and
b : $\kappa \rightarrow \left [ \kappa \right ]^{\chi }$ with $\Delta \cap \alpha \subseteq \cup _{\beta \in b(\alpha )}C_{\beta }$ for every $\alpha < \kappa$.
We shall also prove that if $\chi (\kappa )=1$, then $\kappa$ is greatly Mahlo, prove the consistency (modulo the existence of a supercompact) of $\chi (\aleph_{\omega +1})=\aleph_{0}$, and carry a systematic study of the effect of square principles on the $C$-sequence spectrum.
In the last part of this talk, we shall unveil an unexpected connection between the two principles discussed in the previous parts, proving that, for infinite regular cardinals $\theta< \kappa ,\theta \in Cspec(\kappa )$ if there is a closed witness to $U_{(\kappa ,\kappa ,\theta ,\theta )}$.
This is joint work with Chris Lambie-Hanson.
The productivity of the $\kappa $-chain condition, where $\kappa $ is a regular, uncountable cardinal, has been the focus of a great deal of set-theoretic research. In the 1970’s, consistent examples of $kappa-cc$ posets whose squares are not $\kappa-cc$ were constructed by Laver, Galvin, Roitman and Fleissner. Later, ZFC examples were constructed by Todorcevic, Shelah, and others. The most difficult case, that in which $\kappa = \aleph{_2}$, ...

03E35 ; 03E05 ; 03E75 ; 06E10

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In the talk I will discuss rationality criteria for Fano 3-folds of geometric Picard number 1 over a non-closed field $k$ of characteristic 0. Among these there are 8 types of geometrically rational varieties. We prove that in one of these cases any variety of this type is k-rational, in four cases the criterion of rationality is the existence of a $k$-rational point, and in the last three cases the criterion is the existence of a $k$-rational point and a k rational curve of genus 0 and degree 1, 2, and 3 respectively. The last result is based on recent results of Benoist-Wittenberg. This is a joint work with Yuri Prokhorov.
In the talk I will discuss rationality criteria for Fano 3-folds of geometric Picard number 1 over a non-closed field $k$ of characteristic 0. Among these there are 8 types of geometrically rational varieties. We prove that in one of these cases any variety of this type is k-rational, in four cases the criterion of rationality is the existence of a $k$-rational point, and in the last three cases the criterion is the existence of a $k$-rational ...

05-XX ; 41-XX ; 62-XX ; 14J45

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We present a mathematically rigorous justification of the Local Density Approximation in density functional theory. We provide a quantitative estimate on the difference between the grand-canonical Levy-Lieb energy of a given density (the lowest possible energy of all quantum states having this density) and the integral over the Uniform Electron Gas energy of this density. The error involves gradient terms and justifies the use of the Local Density Approximation in situations where the density is very flat on sufficiently large regions in space. (Joint work with Mathieu Lewin and Elliott Lieb)
We present a mathematically rigorous justification of the Local Density Approximation in density functional theory. We provide a quantitative estimate on the difference between the grand-canonical Levy-Lieb energy of a given density (the lowest possible energy of all quantum states having this density) and the integral over the Uniform Electron Gas energy of this density. The error involves gradient terms and justifies the use of the ...

82B03 ; 81V70 ; 49K21

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

It is known that in 3D exterior domains Ω with the compact smooth boundary $\partial \Omega$, two spaces $X^{r}_{har}\left ( \Omega \right )$ and $V^{r}_{har}\left ( \Omega \right )$ of $L^{r}$-harmonic vector fields $h$ with $h\cdot v\mid _{\partial \Omega }= 0$ and $h\times v\mid _{\partial \Omega }= 0$ are both of finite dimensions, where $v$ denotes the unit outward normal to $\partial \Omega$. We prove that for every $L^{r}$-vector field $u$, there exist $h\in X^{r}_{har}\left ( \Omega \right )$, $w\in H^{1,r}\left ( \Omega \right )^{3}$ with div $w= 0$ and $p\in H^{1,r}\left ( \Omega \right )$ such that $u$ is uniquely decomposed as $u= h$ + rot $w$ + $\bigtriangledown p$.
On the other hand, if for the given $L^{r}$-vector field $u$ we choose its harmonic part $h$ from $V^{r}_{har}\left ( \Omega \right )$, then we have a similar decomposition to above, while the unique expression of $u$ holds only for $1< r< 3$. Furthermore, the choice of $p$ in $H^{1,r}\left ( \Omega \right )$ is determined in accordance with the threshold $r= 3/2$.
Our result is based on the joint work with Matthias Hieber, Anton Seyferd (TU Darmstadt), Senjo Shimizu (Kyoto Univ.) and Taku Yanagisawa (Nara Women Univ.).
It is known that in 3D exterior domains Ω with the compact smooth boundary $\partial \Omega$, two spaces $X^{r}_{har}\left ( \Omega \right )$ and $V^{r}_{har}\left ( \Omega \right )$ of $L^{r}$-harmonic vector fields $h$ with $h\cdot v\mid _{\partial \Omega }= 0$ and $h\times v\mid _{\partial \Omega }= 0$ are both of finite dimensions, where $v$ denotes the unit outward normal to $\partial \Omega$. We prove that for every $L^{r}$-vector field $u...

35B45 ; 35J25 ; 35Q30 ; 58A10 ; 35A25

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  On ellipsephic integers
Dartyge, Cécile (Auteur de la Conférence) | CIRM (Editeur )

The term " ellipsephic " was proposed by Christian Mauduit to denote the integers with missing digits in a given basis. This talk is a survey on several results on the multiplicative properties of these integers.

11A63 ; 11B25 ; 11N25 ; 11N36

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Triality
Elduque, Alberto (Auteur de la Conférence) | CIRM (Editeur )

Duality in projective geometry is a well-known phenomenon in any dimension. On the other hand, geometric triality deals with points and spaces of two different kinds in a sevendimensional projective space. It goes back to Study (1913) and Cartan (1925), and was soon realizedthat this phenomenon is tightly related to the algebra of octonions, and the order 3 outer automorphisms of the spin group in dimension 8.
Tits observed, in 1959, the existence of two different types of geometric triality. One of them is related to the octonions, but the other one is better explained in terms of a class of nonunital composition algebras discovered by the physicist Okubo (1978) inside 3x3-matrices, and which has led to the definition of the so called symmetric composition algebras.
This talk will review the history, classification, and their connections with the phenomenon of triality, of the symmetric composition algebras.
Duality in projective geometry is a well-known phenomenon in any dimension. On the other hand, geometric triality deals with points and spaces of two different kinds in a sevendimensional projective space. It goes back to Study (1913) and Cartan (1925), and was soon realizedthat this phenomenon is tightly related to the algebra of octonions, and the order 3 outer automorphisms of the spin group in dimension 8.
Tits observed, in 1959, the ...

17A75 ; 20G15 ; 17B60

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Bishop’s operator arose in the fifties as possible candidates for being counterexamples to the Invariant Subspace Problem. Several authors addressed the problem of finding invariant subspaces for some of these operators; but still the general problem is open. In this talk, we shall discuss about recent results on the existence of invariant subspaces which are indeed spectral subspaces for Bishop operators, by providing an extension of a Theorem of Atzmon (Joint work with M. Monsalve-Lopez).
Bishop’s operator arose in the fifties as possible candidates for being counterexamples to the Invariant Subspace Problem. Several authors addressed the problem of finding invariant subspaces for some of these operators; but still the general problem is open. In this talk, we shall discuss about recent results on the existence of invariant subspaces which are indeed spectral subspaces for Bishop operators, by providing an extension of a Theorem ...

47A15 ; 47B37 ; 47B38

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Almost one decade ago, Poonen constructed the first examples of algebraic varieties over global fields for which Skorobogatov’s etale Brauer-Manin obstruction does not explain the failure of the Hasse principle. By now, several constructions are known, but they all share common geometric features such as large fundamental groups.
This talk discusses a construction of simply connected fourfolds over global fields of positive characteristic for which the Brauer-Manin machinery fails. Contrary to earlier work in this direction, our construction does not rely on major conjectures. Instead, we establish a new diophantine result of independent interest: a Mordell-type theorem for Campana’s "geometric orbifolds" over function fields of positive characteristic. Along the way, we also construct the first example of simply connected surface of general type over a global field with a non-empty, but non-Zariski dense set of rational points.
Joint work with Pereira and Smeets.
Almost one decade ago, Poonen constructed the first examples of algebraic varieties over global fields for which Skorobogatov’s etale Brauer-Manin obstruction does not explain the failure of the Hasse principle. By now, several constructions are known, but they all share common geometric features such as large fundamental groups.
This talk discusses a construction of simply connected fourfolds over global fields of positive characteristic for ...

14F22 ; 11G35

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Averages of Zagier L-functions
Balkanova, Olga (Auteur de la Conférence) | CIRM (Editeur )

In 1976, Zagier established a functional equation for the generalized Dirichlet L-functions that are part of the Fourier-Whittaker expansion of halfintegral weight Eisenstein series. The special values of these L-functions at 1/2 and at 1 are of particular interest because of the connection with the Selberg trace formula, with moments of symmetric square L-functions and with the prime geodesic theorem. In this talk, we describe various properties of Zagier L-functions and consider several problems related to the asymptotic evaluation of averages of special L-values.
In 1976, Zagier established a functional equation for the generalized Dirichlet L-functions that are part of the Fourier-Whittaker expansion of halfintegral weight Eisenstein series. The special values of these L-functions at 1/2 and at 1 are of particular interest because of the connection with the Selberg trace formula, with moments of symmetric square L-functions and with the prime geodesic theorem. In this talk, we describe various ...

11F12 ; 11F67 ; 11M32

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Emergence of wandering stable components
Berger, Pierre (Auteur de la Conférence) | CIRM (Editeur )

In a joint work with Sebastien Biebler, we show the existence of a locally dense set of real polynomial automorphisms of $\mathbb{C}^{2}$ displaying a stable wandering Fatou component; in particular this solves the problem of their existence, reported by Bedford and Smillie in 1991. These wandering Fatou components have non-empty real trace and their statistical behavior is historical with high emergence. The proof follows from a real geometrical model which enables us to show the existence of an open and dense set of $C^{r}$ families of surface diffeomorphisms in the Newhouse domain, each of which displaying a historical, high emergent, wandering domain at a dense set of parameters, for every $2\leq r\leq \infty $ and $r=\omega $. Hence, this also complements the recent work of Kiriki and Soma, by proving the last Taken's problem in the $C^{\infty }$ and $C^{\omega }$-case.
In a joint work with Sebastien Biebler, we show the existence of a locally dense set of real polynomial automorphisms of $\mathbb{C}^{2}$ displaying a stable wandering Fatou component; in particular this solves the problem of their existence, reported by Bedford and Smillie in 1991. These wandering Fatou components have non-empty real trace and their statistical behavior is historical with high emergence. The proof follows from a real g...

37Bxx ; 37Dxx ; 37FXX ; 32Hxx

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  On determinants of random matrices
Zeitouni, Ofer (Auteur de la Conférence) | CIRM (Editeur )

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  How to compute using quantum walks
Kendon, Vivien (Auteur de la Conférence) | CIRM (Editeur )

Quantum walks are widely and successfully used to model diverse physical processes. This leads to computation of the models, to explore their properties. Quantum walks have also been shown to be universal for quantum computing. This is a more subtle result than is often appreciated, since it applies to computations run on qubit-based quantum computers in the single walker case, and physical quantum walkers in the multi-walker case (quantum cellular automata). Nonetheless, quantum walks are powerful tools for quantum computing when correctly applied. I will explain the relationship between quantum walks as models and quantum walks as computational tools, and give some examples of their application in both contexts.
Quantum walks are widely and successfully used to model diverse physical processes. This leads to computation of the models, to explore their properties. Quantum walks have also been shown to be universal for quantum computing. This is a more subtle result than is often appreciated, since it applies to computations run on qubit-based quantum computers in the single walker case, and physical quantum walkers in the multi-walker case (quantum ...

68Q12 ; 68W40

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

How to study the dynamics of a holomorphic polynomial vector field in $\mathbb{C}^{2}$? What is the replacement of invariant measure? I will survey some surprising rigidity results concerning the behavior of these dynamical system. It is helpful to consider the extension of this dynamical system to the projective plane.
Consider a foliation in the projective plane admitting a unique invariant algebraic curve. Assume that the foliation is generic in the sense that its singular points are hyperbolic. With T.-C. Dinh, we showed that there is a unique positive $dd^{c}$-closed (1, 1)-current of mass 1 which is directed by the foliation. This is the current of integration on the invariant curve. A unique ergodicity theorem for the distribution of leaves follows: for any leaf $L$, appropriate averages on $L$ converge to the current of integration on the invariant curve (although generically the leaves are dense). The result uses our theory of densities for currents. It extends to Foliations on Kähler surfaces.
I will describe a recent result, with T.-C. Dinh and V.-A. Nguyen, dealing with foliations on compact Kähler surfaces. If the foliation, has only hyperbolic singularities and does not admit a transverse measure, in particular no invariant compact curve, then there exists a unique positive $dd^{c}$-closed (1, 1)-current of mass 1 which is directed by the foliation( it’s like uniqueness of invariant measure for discrete dynamical systems). This improves on previous results, with J.-E. Fornæss, for foliations (without invariant algebraic curves) on the projective plane. The proof uses a theory of densities for positive $dd^{c}$-closed currents (an intersection theory).
How to study the dynamics of a holomorphic polynomial vector field in $\mathbb{C}^{2}$? What is the replacement of invariant measure? I will survey some surprising rigidity results concerning the behavior of these dynamical system. It is helpful to consider the extension of this dynamical system to the projective plane.
Consider a foliation in the projective plane admitting a unique invariant algebraic curve. Assume that the foliation is ...

37F75 ; 37Axx

Z