En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

The Role of Dissipation in the Existence of Time-Periodic Solutions to PDE Systems

Sélection Signaler une erreur
Multi angle
Auteurs : Muha, Boris (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : In many mechanical systems where energy is conserved, the phenomenon of resonance can occur, meaning that for certain time-periodic forces, the solution of the system becomes unbounded. Examples of partial differential equations describing such systems include the wave equation and equations of linearized elasticity (Lamé system). On the other hand, resonance does not occur in systems with strong dissipation, such as systems described by the heat equation. More precisely, in such a system, there exists a unique time-periodic solution for each time-periodic right-hand side. In this lecture, we will address the question "how much dissipation is necessary to prevent the occurrence of resonance?". We will analyze periodic solutions to the so-called heat-wave system, where the wave equation is coupled with the heat conduction equation via a common boundary. In this system, dissipation only exists in the heat component, and the system can be viewed as a simplified model of fluid-structure interaction. We will demonstrate that in certain geometric configurations, there exists a unique time-periodic solution for each time-periodic right-hand side, assuming sufficient regularity of the forcing term. A counterexample illustrates that this regularity requirement is stronger than in the case of the Cauchy problem. Finally, we will discuss the open question of whether the result is valid for arbitrary geometry or if there exists a geometry where resonance can occur.

Keywords : heat-wave system; time-periodic solutions; weak solutions

Codes MSC :
35M30 - Mixed-type systems of PDEs
35B10 - Periodic solutions
35K05 - Heat equation
35L05 - Wave equation (hyperbolic PDE)
35D30 - Weak solutions of PDE

    Informations sur la Vidéo

    Réalisateur : Recanzone, Luca
    Langue : Anglais
    Date de publication : 29/11/2024
    Date de captation : 12/11/2024
    Sous collection : Research talks
    arXiv category : Analysis of PDEs
    Domaine : PDE
    Format : MP4 (.mp4) - HD
    Durée : 00:29:03
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-11-12_Muha.mp4

Informations sur la Rencontre

Nom de la rencontre : Mathematics of fluids in motion: Recent results and trends / Fluides en mouvement : résultats récents et perspectives
Organisateurs de la rencontre : Danchin, Raphaël ; Necasova, Sarka
Dates : 11/11/2024 - 15/11/2024
Année de la rencontre : 2024
URL Congrès : https://conferences.cirm-math.fr/3108.html

Données de citation

DOI : 10.24350/CIRM.V.20270403
Citer cette vidéo: Muha, Boris (2024). The Role of Dissipation in the Existence of Time-Periodic Solutions to PDE Systems . CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20270403
URI : http://dx.doi.org/10.24350/CIRM.V.20270403

Voir aussi

Bibliographie

  • GALDI, Giovanni Paolo, MOHEBBI, Mahdi, ZAKERZADEH, Rana, et al. Hyperbolic–Parabolic Coupling and the Occurrence of Resonance in Partially Dissipative Systems. Fluid-structure interaction and biomedical applications, 2014, p. 197-256. - https://doi.org/10.1007/978-3-0348-0822-4_3

  • MOSNY, S., MUHAB., SCHWARZACHER S., WEBSTER J., Time-Periodic Solutions for Hyperbolic-Parabolic Systems, in preparation -



Imagette Video

Sélection Signaler une erreur