En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Endpoint maximal regularity in BMO and its application to fluid mechanics

Sélection Signaler une erreur
Multi angle
Auteurs : Ogawa,Takayoshi (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : We consider maximal regularity for the heat equation based on the endpoint function class BMO (the class of bounded mean oscillation). It is well known that BM O(Rn) is the endpoint class for solving the initial value problem for the incompressible Navier-Stokes equations and it is well suitable for solving such a problem ([3]) rather than the end-point homogeneous Besov spaces (cf. [1], [5]). First we recall basic properties of the function space BM O and show maximal regularity for the initial value problem of the Stokes equations ([4]). As an application, we consider the local well-posedness issue for the MHD equations with the Hall effect (cf. [2]). This talk is based on a joint work with Senjo Shimizu (Kyoto University).

Keywords : MHD system; Navier-Stokes equations; maximal regularity; BMO

Codes MSC :
35K45 - Initial value problems for pararabolic systems
35K55 - Nonlinear parabolic equations
35Q35 - PDEs in connection with fluid mechanics
35Q60 - PDEs in connection with optics and electromagnetic theory
42B37 - Harmonic analysis and PDE

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 29/11/2024
    Date de captation : 14/11/2024
    Sous collection : Research talks
    arXiv category : Analysis of PDEs
    Domaine : PDE
    Format : MP4 (.mp4) - HD
    Durée : 01:01:14
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-11-14_Ogawa.mp4

Informations sur la Rencontre

Nom de la rencontre : Mathematics of fluids in motion: Recent results and trends / Fluides en mouvement : résultats récents et perspectives
Organisateurs de la rencontre : Danchin, Raphaël ; Necasova, Sarka
Dates : 11/11/2024 - 15/11/2024
Année de la rencontre : 2024
URL Congrès : https://conferences.cirm-math.fr/3108.html

Données de citation

DOI : 10.24350/CIRM.V.20270503
Citer cette vidéo: Ogawa,Takayoshi (2024). Endpoint maximal regularity in BMO and its application to fluid mechanics. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20270503
URI : http://dx.doi.org/10.24350/CIRM.V.20270503

Voir aussi

Bibliographie

  • BOURGAIN, Jean et PAVLOVIĆ, Nataša. Ill-posedness of the Navier–Stokes equations in a critical space in 3D. Journal of Functional Analysis, 2008, vol. 255, no 9, p. 2233-2247. - https://doi.org/10.1016/j.jfa.2008.07.008

  • KAWASHIMA, Shuichi, NAKASATO, Ryosuke, et OGAWA, Takayoshi. Global well-posedness and time-decay of solutions for the compressible Hall-magnetohydrodynamic system in the critical Besov framework. Journal of Differential Equations, 2022, vol. 328, p. 1-64. - https://doi.org/10.1016/j.jde.2022.03.017

  • KOCH, Herbert et TATARU, Daniel. Well-posedness for the Navier–Stokes equations. Advances in Mathematics, 2001, vol. 157, no 1, p. 22-35. - https://doi.org/10.1006/aima.2000.1937

  • OGAWA, Takayoshi et SHIMIZU, Senjo. Maximal regularity for the Cauchy problem of the heat equation in BMO. Mathematische Nachrichten, 2022, vol. 295, no 7, p. 1406-1442. - https://doi-org/10.1002/mana.201900506

  • WANG, Baoxiang. Ill-posedness for the Navier–Stokes equations in critical Besov spaces B˙∞, q− 1. Advances in Mathematics, 2015, vol. 268, p. 350-372. - https://doi.org/10.1016/j.aim.2014.09.024



Imagette Video

Sélection Signaler une erreur