En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Endpoint maximal regularity in BMO and its application to fluid mechanics

Bookmarks Report an error
Multi angle
Authors : Ogawa,Takayoshi (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We consider maximal regularity for the heat equation based on the endpoint function class BMO (the class of bounded mean oscillation). It is well known that BM O(Rn) is the endpoint class for solving the initial value problem for the incompressible Navier-Stokes equations and it is well suitable for solving such a problem ([3]) rather than the end-point homogeneous Besov spaces (cf. [1], [5]). First we recall basic properties of the function space BM O and show maximal regularity for the initial value problem of the Stokes equations ([4]). As an application, we consider the local well-posedness issue for the MHD equations with the Hall effect (cf. [2]). This talk is based on a joint work with Senjo Shimizu (Kyoto University).

Keywords : MHD system; Navier-Stokes equations; maximal regularity; BMO

MSC Codes :
35K45 - Initial value problems for pararabolic systems
35K55 - Nonlinear parabolic equations
35Q35 - PDEs in connection with fluid mechanics
35Q60 - PDEs in connection with optics and electromagnetic theory
42B37 - Harmonic analysis and PDE

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 29/11/2024
    Conference Date : 14/11/2024
    Subseries : Research talks
    arXiv category : Analysis of PDEs
    Mathematical Area(s) : PDE
    Format : MP4 (.mp4) - HD
    Video Time : 01:01:14
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-11-14_Ogawa.mp4

Information on the Event

Event Title : Mathematics of fluids in motion: Recent results and trends / Fluides en mouvement : résultats récents et perspectives
Event Organizers : Danchin, Raphaël ; Necasova, Sarka
Dates : 11/11/2024 - 15/11/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/3108.html

Citation Data

DOI : 10.24350/CIRM.V.20270503
Cite this video as: Ogawa,Takayoshi (2024). Endpoint maximal regularity in BMO and its application to fluid mechanics. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20270503
URI : http://dx.doi.org/10.24350/CIRM.V.20270503

See Also

Bibliography

  • BOURGAIN, Jean et PAVLOVIĆ, Nataša. Ill-posedness of the Navier–Stokes equations in a critical space in 3D. Journal of Functional Analysis, 2008, vol. 255, no 9, p. 2233-2247. - https://doi.org/10.1016/j.jfa.2008.07.008

  • KAWASHIMA, Shuichi, NAKASATO, Ryosuke, et OGAWA, Takayoshi. Global well-posedness and time-decay of solutions for the compressible Hall-magnetohydrodynamic system in the critical Besov framework. Journal of Differential Equations, 2022, vol. 328, p. 1-64. - https://doi.org/10.1016/j.jde.2022.03.017

  • KOCH, Herbert et TATARU, Daniel. Well-posedness for the Navier–Stokes equations. Advances in Mathematics, 2001, vol. 157, no 1, p. 22-35. - https://doi.org/10.1006/aima.2000.1937

  • OGAWA, Takayoshi et SHIMIZU, Senjo. Maximal regularity for the Cauchy problem of the heat equation in BMO. Mathematische Nachrichten, 2022, vol. 295, no 7, p. 1406-1442. - https://doi-org/10.1002/mana.201900506

  • WANG, Baoxiang. Ill-posedness for the Navier–Stokes equations in critical Besov spaces B˙∞, q− 1. Advances in Mathematics, 2015, vol. 268, p. 350-372. - https://doi.org/10.1016/j.aim.2014.09.024



Imagette Video

Bookmarks Report an error