En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Stokes' theorem in Heisenberg groups

Sélection Signaler une erreur
Multi angle
Auteurs : Vittone, Davide (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : We introduce the notion of submanifolds with boundary with intrinsic $C^{1}$ regularity in the setting of sub-Riemannian Heisenberg groups. We present a Stokes' Theorem for such submanifolds involving the integration of Heisenberg differential foms introduced by Rumin. This is a joint work with M. Di Marco, A. Julia and S. Nicolussi Golo.

Keywords : Heisenberg group; manifolds with boundary; Stokes theorem; Rumins form

Codes MSC :
26B20 - Integral formulas (Stokes, Gauss, Green, etc.)
53C17 - Sub-riemannian geometry
53C65 - Integral geometry
58C35 - "Integration on manifolds; measures on manifolds, See Also { 28Cxx}"

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 06/12/2024
    Date de captation : 25/11/2024
    Sous collection : Research talks
    arXiv category : Differential Geometry ; Classical Analysis and ODEs ; Metric Geometry
    Domaine : Analysis and its Applications
    Format : MP4 (.mp4) - HD
    Durée : 00:57:58
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-11-25_Vittone.mp4

Informations sur la Rencontre

Nom de la rencontre : Frontiers in Sub-Riemannian Geometry / Aux frontières de la géométrie sous-riemannienne
Organisateurs de la rencontre : Borza, Samuel ; Chittaro, Francesca ; Rifford, Ludovic ; Sacchelli, Ludovic ; Stefani, Giorgio
Dates : 25/11/2024 - 29/11/2024
Année de la rencontre : 2024
URL Congrès : https://conferences.cirm-math.fr/3091.html

Données de citation

DOI : 10.24350/CIRM.V.20272703
Citer cette vidéo: Vittone, Davide (2024). Stokes' theorem in Heisenberg groups. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20272703
URI : http://dx.doi.org/10.24350/CIRM.V.20272703

Voir aussi

Bibliographie

  • DI MARCO, Marco, JULIA, Antoine, GOLO, Sebastiano Nicolussi, et al. Submanifolds with boundary and Stokes' Theorem in Heisenberg groups. arXiv preprint arXiv:2403.18675, 2024. - https://doi.org/10.48550/arXiv.2403.18675

  • FRANCHI, Bruno, SERAPIONI, Raul, et CASSANO, Francesco Serra. Regular submanifolds, graphs and area formula in Heisenberg groups. Advances in mathematics, 2007, vol. 211, no 1, p. 152-203. - https://doi.org/10.1016/j.aim.2006.07.015

  • FRANCHI, Bruno, TCHOU, Nicoletta, et TESI, Maria Carla. Div–curl type theorem, H-convergence and Stokes formula in the Heisenberg group. Communications in Contemporary Mathematics, 2006, vol. 8, no 01, p. 67-99. - http://doi.org/10.1142/S0219199706002039

  • FRANCHI, Bruno, SERAPIONI, Raul, et CASSANO, Francesco Serra. Regular submanifolds, graphs and area formula in Heisenberg groups. Advances in mathematics, 2007, vol. 211, no 1, p. 152-203. - https://doi.org/10.1016/j.aim.2006.07.015

  • RUMIN, Michel. Formes différentielles sur les variétés de contact. Journal of Differential Geometry, 1994, vol. 39, no 2, p. 281-330. - http:// doi.org/10.4310/jdg/1214454873



Imagette Video

Sélection Signaler une erreur