En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

von Neumann's inequality on the polydisc

Bookmarks Report an error
Multi angle
Authors : Hartz, Michael (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The classical von Neumann inequality provides a fundamental link between complex analysis and operator theory. It shows that for any contraction $T$ on a Hilbert space and any polynomial $p$, the operator norm of $p(T)$ satisfies
$\|p(T)\| \leq \sup _{|z| \leq 1}|p(z)|$
Whereas Andô extended this inequality to pairs of commuting contractions, the corresponding statement for triples of commuting contractions is false. However, it is still not known whether von Neumann's inequality for triples of commuting contractions holds up to a constant. I will talk about this question and about function theoretic upper bounds for $\|p(T)\|$.

Keywords : von Neumann's inequality; Andô's inequality; commuting tuples of contractions; polydisc; Besov norm

MSC Codes :
47A13 - Several-variable spectral theory
47A30 - Norms (inequalities, more than one norm, etc.)
47A60 - Functional calculus

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 13/12/2024
    Conference Date : 05/12/2024
    Subseries : Research talks
    arXiv category : Functional Analysis ; Complex Variables
    Mathematical Area(s) : Analysis and its Applications
    Format : MP4 (.mp4) - HD
    Video Time : 00:38:09
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-12-05_Hartz.mp4

Information on the Event

Event Title : Operators on analytic function spaces / Opérateurs sur des espaces de fonctions analytiques
Event Organizers : Fricain, Emmanuel ; Garcia, Stephan Ramon ; Gorkin, Pamela ; Hartmann, Andreas ; Mashreghi, Javad
Dates : 02/12/2024 - 06/12/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/3085.html

Citation Data

DOI : 10.24350/CIRM.V.20273503
Cite this video as: Hartz, Michael (2024). von Neumann's inequality on the polydisc. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20273503
URI : http://dx.doi.org/10.24350/CIRM.V.20273503

See Also

Bibliography



Imagette Video

Bookmarks Report an error