Authors : Marin, Jean-Michel (Author of the conference)
CIRM (Publisher )
Abstract :
Approximate Bayesian computation (ABC) techniques, also known as likelihood-free methods, have become a standard tool for the analysis of complex models, primarily in population genetics. The development of new ABC methodologies is undergoing a rapid increase in the past years, as shown by multiple publications, conferences and softwares. In this lecture, we introduce some recent advances on ABC techniques, notably for model choice problems.
Keywords : likelihood-free methods; Bayesian statistics; ABC methodology; DIYABC; Bayesian model choice; Gibbs random fields
MSC Codes :
62F15
- Bayesian inference
65C60
- Computational problems in statistics
Film maker : Hennenfent, Guillaume
Language : English
Available date : 16/03/16
Conference Date : 29/02/16
Subseries : Research talks
arXiv category : Machine Learning ; Computation
Mathematical Area(s) : Probability & Statistics
Format : MP4 (.mp4) - HD
Video Time : 01:01:46
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2016-02-29_Marin.mp4
|
Event Title : Thematic month on statistics - Week 5: Bayesian statistics and algorithms / Mois thématique sur les statistiques - Semaine 5 : Semaine Bayésienne et algorithmes Event Organizers : Le Gouic, Thibaut ; Pommeret, Denys ; Willer, Thomas Dates : 29/02/16 - 04/03/16
Event Year : 2016
Event URL : http://conferences.cirm-math.fr/1619.html
DOI : 10.24350/CIRM.V.18937303
Cite this video as:
Marin, Jean-Michel (2016). Approximate Bayesian Computation methods for model choice a machine learning point of view - Part 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18937303
URI : http://dx.doi.org/10.24350/CIRM.V.18937303
|
See Also
Bibliography
- Ewens, W.J. (200). Mathematical population genetics. I : theoretical introduction. New York : Springer - http://dx.doi.org/10.1007/978-0-387-21822-9
- Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., & Rubin, D.B. (Eds.). (2014). Bayesian data analysis. Boca Raton : CRC Press - https://www.crcpress.com/Bayesian-Data-Analysis-Third-Edition/Gelman-Carlin-Stern-Dunson-Vehtari-Rubin/9781439840955
- Marin, J.-M., & Robert, C.P. (2014). Bayesian essentials with R. New York : Springer - http://dx.doi.org/10.1007/978-1-4614-8687-9
- Nielsen, R., & Slatkin, M. (2013). An introduction to population genetics : theory and applications. Sunderland : Sinauer Associates - http://www.sinauer.com/an-introduction-to-population-genetics-theory-and-applications.html
- Robert, C.P. (2001). The Bayesian choice. From decision-theoretic foundations to computational implementation. New York : Springer - http://dx.doi.org/10.1007/0-387-71599-1
- Wakeley, J. (2009). Coalescent theory : an introduction. Greenwood Village : Roberts & Co. Publishers - http://www.roberts-publishers.com/authors/wakeley-john/coalescent-theory.html