Authors : Rowlett, Julie (Author of the conference)
CIRM (Publisher )
Abstract :
Polyakov's formula expresses a difference of zeta-regularized determinants of Laplace operators, an anomaly of global quantities, in terms of simple local quantities. Such a formula is well known in the case of closed surfaces (Osgood, Philips, & Sarnak 1988) and surfaces with smooth boundary (Alvarez 1983). Due to the abstract nature of the definition of the zeta-regularized determinant of the Laplacian, it is typically impossible to compute an explicit formula. Nonetheless, Kokotov (genus one Kokotov & Klochko 2007, arbitrary genus Kokotov 2013) demonstrated such a formula for polyhedral surfaces ! I will discuss joint work with Clara Aldana concerning the zeta regularized determinant of the Laplacian on Euclidean domains with corners. We determine a Polyakov formula which expresses the dependence of the determinant on the opening angle at a corner. Our ultimate goal is to determine an explicit formula, in the spirit of Kokotov's results, for the determinant on polygonal domains.
MSC Codes :
58C40
- Spectral theory; eigenvalue problems
58J52
- Determinants and determinant bundles, analytic torsion
35K08
- Heat kernel
Film maker : Hennenfent, Guillaume
Language : English
Available date : 12/05/2016
Conference Date : 28/04/2016
Subseries : Research talks
arXiv category : Spectral Theory ; Mathematical Physics ; Differential Geometry
Mathematical Area(s) : PDE ; Geometry ; Mathematical Physics
Format : MP4 (.mp4) - HD
Video Time : 00:47:07
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2016-04-28_Rowlett.mp4
|
Event Title : Evolution equations on singular spaces / Équations d'évolution sur les espaces singuliers Event Organizers : Baskin, Dean ; Hillairet, Luc ; Wunsch, Jared Dates : 25/04/2016 - 29/04/2016
Event Year : 2016
Event URL : http://conferences.cirm-math.fr/1396.html
DOI : 10.24350/CIRM.V.18964603
Cite this video as:
Rowlett, Julie (2016). A Polyakov formula for sectors. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18964603
URI : http://dx.doi.org/10.24350/CIRM.V.18964603
|
See Also
Bibliography