https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Differential forms and the Hölder equivalence problem - Part 1
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Differential forms and the Hölder equivalence problem - Part 1

Bookmarks Report an error
Post-edited
Authors : Pansu, Pierre (Author of the conference)
CIRM (Publisher )

Loading the player...
Heisenberg group sub-Riemannian distance metric geometry contact structure bi-Lipschitz homeomorphism bi-Lipschitz embedding Banach space quantitative differentiability von Koch snowflake Assouad dimension Hölder homeomorphism Hausdorff dimension sectional curvature pinching CR geometry ideal boundary (hyperbolic) quasisymmetric mapping

Abstract : A sub-Riemannian distance is obtained when minimizing lengths of paths which are tangent to a distribution of planes. Such distances differ substantially from Riemannian distances, even in the simplest example, the 3-dimensional Heisenberg group. This raises many questions in metric geometry: embeddability in Banach spaces, bi-Lipschitz or bi-Hölder comparison of various examples. Emphasis will be put on Gromov's results on the Hölder homeomorphism problem, and on a quasisymmetric version of it motivated by Riemannian geometry.

MSC Codes :
53C15 - General geometric structures on manifolds (almost complex, contact, symplectic, almost product structures, etc.)
53C20 - Global Riemannian geometry, including pinching, See Also { 31C12, 58B20}

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 09/09/14
    Conference Date : 01/09/14
    Subseries : Research talks
    arXiv category : Differential Geometry
    Mathematical Area(s) : Geometry
    Format : QuickTime (.mov) Video Time : 01:21:59
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2014-09-01_Pansu.mp4

Information on the Event

Event Title : Sub-Riemannian manifolds : from geodesics to hypoelliptic diffusion / Géométrie sous-riemannienne : des géodésiques aux diffusions hypoelliptiques
Event Organizers : Agrachev, Andrei A. ; Boscain, Ugo ; Jean, Frédéric ; Sigalotti, Mario
Dates : 01/09/14 - 05/09/14
Event Year : 2014
Event URL : http://www.cmap.polytechnique.fr/subriem...

Citation Data

DOI : 10.24350/CIRM.V.18559803
Cite this video as: Pansu, Pierre (2014). Differential forms and the Hölder equivalence problem - Part 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18559803
URI : http://dx.doi.org/10.24350/CIRM.V.18559803

Bibliography



Bookmarks Report an error