https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Towards complex and realistic tokamaks geometries in computational plasma physics
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Towards complex and realistic tokamaks geometries in computational plasma physics

Bookmarks Report an error
Post-edited
Authors : Ratnani, Ahmed (Author of the conference)
CIRM (Publisher )

Loading the player...
edge localised modes (ELMs) MHD simulation (JOREK) computer aided design (CAD) isogeometric analysis (IGA) splines h-p-k-refinement k-refinement flux aligned meshes ITER tokamak WEST tokamak r-refinement Monge-Kantorovich problem Monge-Ampère equation geometric multigrid two-grid method for nonlinear PDE equidistribution - adaptative anisotropic mapping

Abstract :
MSC Codes :
65D07 - Splines (numerical methods)
65D17 - Computer aided design (modeling of curves and surfaces)
65N50 - Mesh generation and refinement
82D10 - Plasmas
35K96 - Parabolic Monge-Ampère equations

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 22/08/14
    Conference Date : 14/08/14
    Subseries : Research talks
    arXiv category : Numerical Analysis ; Computer Science
    Mathematical Area(s) : Numerical Analysis & Scientific Computing ; Mathematical Physics
    Format : QuickTime (.mov) Video Time : 00:55:30
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2014-08-14_Ratnani.mp4

Information on the Event

Event Title : CEMRACS : Numerical modeling of plasmas / CEMRACS : Modèles numériques des plasmas
Event Organizers : Campos Pinto, Martin ; Charles, Frédérique ; Guillard, Hervé ; Nkonga, Boniface
Dates : 21/07/14 - 29/08/14
Event Year : 2014
Event URL : http://smai.emath.fr/cemracs/cemracs14/

Citation Data

DOI : 10.24350/CIRM.V.18556703
Cite this video as: Ratnani, Ahmed (2014). Towards complex and realistic tokamaks geometries in computational plasma physics. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18556703
URI : http://dx.doi.org/10.24350/CIRM.V.18556703

Bibliography

  • Ratnani, A. et al. Gasus : Python for IsoGeometric Analysis simulations in Plasmas Physics. (In preparation) -

  • Ratnani, A. et al. Alignement and equidistribution for two-dimensional grid adaptation using B-splines. (In preparation) -

  • Ratnani, A. et al. Application of the IsoGeometric mesh adaptation for solving the Anistropic Diffusion problem. (In preparation) -

  • Baines, M.J. Least squares and approximate equidistribution in multidimensions. Numerical Methods for Partial Dierential Equations, vol. 15 (1999), no. 5, pp. 605-615 - http://dx.doi.org/10.1002/(sici)1098-2426(199909)15:5<605::aid-num7>3.0.co;2-9

  • Benamou, J.D., Froese, B. D. and Oberman, A. M. Two numerical methods for the elliptic monge-ampère equation. ESAIM : Mathematical Modelling and Numerical Analysis, vol. 44 (2010), no. 4, pp. 737-758 - http://dx.doi.org/10.1051/m2an/2010017

  • Brenier, Y. Polar factorization and monotone rearrangement of vector-valued functions. Communications on Pure and Applied Mathematics, vol. 44 (1991), no. 4, pp. 375-417 - http://dx.doi.org/10.1002/cpa.3160440402

  • Budd, C.J., Cullen, M.J.P. and Walsh, E.J. Monge-ampère based moving mesh methods for numerical weather prediction, with applications to the eady problem. Journal of Computational Physics, vol. 236 (2013), pp. 247-270 - http://dx.doi.org/10.1016/j.jcp.2012.11.014

  • Delzanno, G.L., Chacon, L., Finn, J.M., Chung, Y. and Lapenta, G. An optimal robust equidistribution method for two-dimensional grid adaptation based on monge-kantorovich optimization. Journal of Computational Physics, vol. 227 (2008), no. 23, pp. 9841-9864 - http://dx.doi.org/10.1016/j.jcp.2008.07.020

  • Fasshauer, G.E. and Schumaker, Larry L. Minimal energy surfaces using parametric splines. Computer Aided Geometric Design, vol. 13 (1996), no. 1, pp. 45-79 - http://dx.doi.org/10.1016/0167-8396(95)00006-2

  • Floater, M.S. and Hormann, K. Surface parameterization : a tutorial and survey. In Dodgson, N.A. (ed.) et al., Advances in Multiresolution for Geometric Modelling. Mathematics and Visualization. Berlin, Springer, 2005, pp. 157-186. ISBN 3-540-21462-3 - http://dx.doi.org/10.1007/3-540-26808-1_9

  • Huang, W. and Russell, R.D. Adaptive moving mesh methods. Applied mathematical sciences, 174. New York, Springer, 2011. xvii, 432 p. ISBN 978-1-4419-7915-5 - http://dx.doi.org/10.1007/978-1-4419-7916-2



Bookmarks Report an error