https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Mean-field analysis of an excitatory neuronal network: application to systemic risk modeling?
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Mean-field analysis of an excitatory neuronal network: application to systemic risk modeling?

Bookmarks Report an error
Post-edited
Authors : Delarue, François (Author of the conference)
CIRM (Publisher )

Loading the player...
integrate and default model mean-field interaction blow-up phenomenon systemic risk nonlinear Fokker Planck equation change of regime in existence and uniqueness

Abstract : Inspired by modeling in neurosciences, we here discuss the well-posedness of a networked integrate-and-fire model describing an infinite population of companies which interact with one another through their common statistical distribution. The interaction is of the self-excitatory type as, at any time, the debt of a company increases when some of the others default: precisely, the loss it receives is proportional to the instantaneous proportion of companies that default at the same time. From a mathematical point of view, the coefficient of proportionality, denoted by a, is of great importance as the resulting system is known to blow-up when a takes large values, a blow-up meaning that a macroscopic proportion of companies may default at the same time. In the current talk, we focus on the complementary regime and prove that existence and uniqueness hold in arbitrary time without any blow-up when the excitatory parameter is small enough.

MSC Codes :
35K60 - "Nonlinear boundary value problems for linear parabolic PDE; boundary value problems for nonlinear parabolic PDE"
82C31 - Stochastic methods in time-dependent statistical mechanics (Fokker-Planck, Langevin, etc.)
92B20 - Neural networks, artificial life and related topics

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 11/09/14
    Conference Date : 09/09/14
    Subseries : Research talks
    arXiv category : Quantitative Biology ; Analysis of PDEs ; Probability
    Mathematical Area(s) : PDE ; Mathematics in Science & Technology
    Format : QuickTime (.mov) Video Time : 00:34:23
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2014-09-09_Delarue.mp4

Information on the Event

Event Title : Advances in stochastic analysis for risk modeling / Analyse stochastique pour la modélisation des risques
Event Organizers : Bouchard, Bruno ; Chassagneux, Jean-François ; Elie, Romuald ; Réveillac, Anthony ; Soner, H. Mete
Dates : 08/09/14 - 12/09/14
Event Year : 2014

Citation Data

DOI : 10.24350/CIRM.V.18560203
Cite this video as: Delarue, François (2014). Mean-field analysis of an excitatory neuronal network: application to systemic risk modeling?. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18560203
URI : http://dx.doi.org/10.24350/CIRM.V.18560203

Bibliography

  • M. J. Cáceres, J. A. Carrillo, and B. Perthame, Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states, J. Math. Neurosci., 1 (2011), p. 7 - http://dx.doi.org/10.1186/2190-8567-1-7

  • F. Delarue, J. Inglis, S. Rubenthaler, and E. Tanré, Global solvability of a networked integrate-and-fire model of McKean-Vlasov type. arxiv:1211.0299v4, 2014 - http://arxiv.org/abs/1211.0299v4

  • F. Delarue, J. Inglis, S. Rubenthaler, and E. Tanré, Particle systems with a singular mean-field self-excitation. Application to neuronal networks. arxiv:1406.1151, 2014 - http://arxiv.org/abs/1406.1151v2



Bookmarks Report an error