En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

$P$-adic cohomology of the Lubin-Tate tower

Bookmarks Report an error
Multi angle
Authors : Scholze, Peter (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We prove a finiteness result on the $p$-adic cohomology of the Lubin-Tate tower, which allows one to go from mod $p$ and $p$-adic
$GL_n (F)$-representations to Galois representations (compatibly with some global cor-respondences).

MSC Codes :
14F30 - $p$-adic cohomology, crystalline cohomology
14G22 - Rigid analytic geometry
22E50 - Representations of Lie and linear algebraic groups over local fields

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 22/08/14
    Conference Date : 02/07/14
    Series : The Fields Medallists
    Subseries : Research talks
    arXiv category : Algebraic Geometry ; Number Theory
    Mathematical Area(s) : Algebra ; Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:55:20
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2014-07-02_Scholze.mp4

Information on the Event

Event Title : Arithmetics of Shimura varieties, of automorphic forms and applications / Arithmétique des variétés de Shimura et des formes automorphes et applications
Event Organizers : Dat, Jean-François ; Fargues, Laurent ; Tilouine, Jacques
Dates : 30/06/2014 - 04/07/2014
Event Year : 2014

Citation Data

DOI : 10.24350/CIRM.V.18580303
Cite this video as: Scholze, Peter (2014). $P$-adic cohomology of the Lubin-Tate tower. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18580303
URI : http://dx.doi.org/10.24350/CIRM.V.18580303

Bibliography



Bookmarks Report an error