Authors : Genzmer, Yohann (Author of the conference)
CIRM (Publisher )
Abstract :
The Zariski problem concerns the analytical classification of germs of curves of the complex plane $\mathbb{C}^2$. In full generality, it is asked to understand as accurately as possible the quotient $\mathfrak{M}(f_0)$ of the topological class of the germ of curve $\lbrace f_0(x, y) = 0 \rbrace$ up to analytical equivalence relation. The aim of the talk is to review, as far as possible, the approach of Zariski as well as the recent developments. (Full abstract in attachment).
O. Zariski - analytic classification - foliation - germ - Puiseux expansion
MSC Codes :
32G13
- Analytic moduli problems [For algebraic moduli problems, see 14D20, 14D22, 14H10, 14J10] [See also 14H15, 14J15]
32S65
- Singularities of holomorphic vector fields and foliations
Film maker : Hennenfent, Guillaume
Language : English
Available date : 17/02/15
Conference Date : 04/02/15
Subseries : Research talks
arXiv category : Dynamical Systems ; Algebraic Geometry
Mathematical Area(s) : Algebraic & Complex Geometry
Format : MP4 (.mp4) - HD
Video Time : 01:06:55
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2015-02-04_Genzmer.mp4
|
Event Title : Applications of Artin approximation in singularity theory / Applications de l'approximation de Artin en théorie des singularités Event Organizers : Hauser, Herwig ; Rond, Guillaume Dates : 02/02/15 - 06/02/15
Event Year : 2015
Event URL : https://conferences.cirm-math.fr/1474.html
DOI : 10.24350/CIRM.V.18694303
Cite this video as:
Genzmer, Yohann (2015). The Zariski problem for homogeneous and quasi-homogeneous curves. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18694303
URI : http://dx.doi.org/10.24350/CIRM.V.18694303
|
Bibliography
- [1] Hefez, A., & Hernandes, M.E. (2009). Analytic classification of plane branches up to multiplicity 4. Journal of Symbolic Computation, 44(6), 626-634 - http://dx.doi.org/10.1016/j.jsc.2008.09.003
- [2] Hefez, A., & Hernandes, M.E. (2011). The analytic classification of plane branches. Bulletin of the London Mathematical Society, 43(2), 289-298 - http://dx.doi.org/10.1112/blms/bdq113
- [3] Hefez, A., & Hernandes, M.E. (2013). Algorithms for the implementation of the analytic classification of plane branches. Journal of Symbolic Computation, 50, 308-313 - http://dx.doi.org/10.1016/j.jsc.2012.08.003
- [4] Mattei, J.-F. (1991). Modules de feuilletages holomorphes singuliers. I: équisingularité. Inventiones Mathematicae 103(2), 297-325 - http://dx.doi.org/10.1007/BF01239515
- [5] Zariski, O. (1986). Le problème des modules pour les branches planes : cours donné au Centre de mathématiques de l'École polytechnique. Paris: Hermann - https://www.zbmath.org/?q=an:0592.14010