En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Construction of $p$-adic $L$-functions for unitary groups

Bookmarks Report an error
Multi angle
Authors : Harris, Michael (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : This is a report on the construction of $p$-adic $L$-functions attached to ordinary families of holomorphic modular forms on the unitary groups of $n$-dimensional hermitian vector spaces over $CM$ fields. The results have been obtained over a period of nearly 15 years in joint work with Ellen Eischen, Jian-Shu Li, and Chris Skinner. The $p$-adic $L$-functions specialize at classical points to critical values of standard $L$-functions of cohomological automorphic forms on unitary groups, or equivalently of cohomological automorphic forms on $GL(n)$ that satisfy a polarization condition. When $n = 1$ one recovers Katz's construction of $p$-adic $L$-functions of Hecke characters.

MSC Codes :
11F33 - Congruences for modular and $p$-adic modular forms
11R23 - Iwasawa theory
14G35 - Modular and Shimura varieties

Information on the Event

Event Title : Arithmetic geometry, representation theory and applications / Géométrie arithmétique, théorie des représentations et applications
Event Organizers : Abbes, Ahmed ; Breuil, Christophe ; Chenevier, Gaëtan ; Saito, Takeshi
Dates : 22/06/15 - 26/06/15
Event Year : 2015
Event URL : http://conferences.cirm-math.fr/1185.html

Citation Data

DOI : 10.24350/CIRM.V.18774303
Cite this video as: Harris, Michael (2015). Construction of $p$-adic $L$-functions for unitary groups. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18774303
URI : http://dx.doi.org/10.24350/CIRM.V.18774303

Bibliography

  • Harris, M., Li, J.-S., & Skinner, C.M. (2006). $p$-adic $L$-functions for unitary Shimura varieties. I: Construction of the Eisenstein measure. Documenta Mathematica, Extra Vol., 393-464 - http://eudml.org/doc/129180



Bookmarks Report an error