https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Endomorphisms, train track maps, and fully irreducible monodromies
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Endomorphisms, train track maps, and fully irreducible monodromies

Bookmarks Report an error
Post-edited
Authors : Kapovich, Ilya (Author of the conference)
CIRM (Publisher )

Loading the player...
BNS invariant free-by-cyclic group free group monodromy fully irreducible automorphism train track map folded mapping torus semi-flow fully irreducible criterion free groups endomorphisms stable quotient

Abstract : An endomorphism of a finitely generated free group naturally descends to an injective endomorphism on the stable quotient. We establish a geometric incarnation of this fact : an expanding irreducible train track map inducing an endomorphism of the fundamental group determines an expanding irreducible train track representative of the injective endomorphism of the stable quotient. As an application, we prove that the property of having fully irreducible monodromy for a splitting of a hyperbolic free-by-cyclic group G depends only on the component of the BNS invariant $\sum \left ( G \right )$ containing the associated homomorphism to the integers. In particular, it follows that if G is the mapping torus of an atoroidal fully irreducible automorphism of a free group and if the union of $\sum \left ( G \right ) $ and $\sum \left ( G \right )$ is connected then for every splitting of $G$ as a (f.g. free)-by-(infinite cyclic) group the monodromy is fully irreducible.
This talk is based on joint work with Spencer Dowdall and Christopher Leininger.

MSC Codes :
20F65 - Geometric group theory
37Bxx - topological dynamics
37Dxx - Dynamical systems with hyperbolic behavior
57Mxx - Low-dimensional topology

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 30/07/15
    Conference Date : 13/07/15
    Subseries : Research talks
    arXiv category : Group Theory ; Dynamical Systems ; Geometric Topology
    Mathematical Area(s) : Algebra ; Dynamical Systems & ODE ; Topology ; Geometry
    Format : QuickTime (.mov) Video Time : 1:06:18
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2015-07-13_Kapovich.mp4

Information on the Event

Event Title : Impact of geometric group theory / Impacts de la géométrie des groupes
Event Organizers : Arzhantseva, Goulnara N. ; Bedaride, Nicolas ; Gaboriau, Damien ; Hilion, Arnaud
Dates : 13/07/15 - 17/07/15
Event Year : 2015
Event URL : http://conferences.cirm-math.fr/1224.html

Citation Data

DOI : 10.24350/CIRM.V.18799003
Cite this video as: Kapovich, Ilya (2015). Endomorphisms, train track maps, and fully irreducible monodromies. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18799003
URI : http://dx.doi.org/10.24350/CIRM.V.18799003

See Also

Bibliography



Bookmarks Report an error