En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

$k$-sum free sets in $[0,1]$

Bookmarks Report an error
Multi angle
Authors : de Roton, Anne (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Let $k > 2$ be a real number. We inquire into the following question : what is the maximal size (inner Lebesque measure) and the form of a set avoiding solutions to the linear equation $x + y = kz$ ? This problem was used for $k$ an integer larger than 4 to guess the density and the form of a corresponding maximal set of positive integers less than $N$. Nevertheless, in the case $k = 3$, the discrete and the continuous setting happen to be very different. Although the structure of maximal sets in the continuous setting is quite easy to describe for $k$ far enough from 2, it is more difficult to handle as $k$ comes closer to 2. Joint work with Alain Plagne.

MSC Codes :
05D05 - Extremal set theory
11Pxx - Additive number theory; partitions

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 06/10/15
    Conference Date : 10/09/15
    Subseries : Research talks
    arXiv category : Combinatorics ; Number Theory
    Mathematical Area(s) : Combinatorics ; Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:34:56
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2015-09-10_de_Roton.mp4

Information on the Event

Event Title : Additive combinatorics in Marseille / Combinatoire additive à Marseille
Event Organizers : Hennecart, François ; Plagne, Alain ; Szemerédi, Endre
Dates : 07/09/15 - 11/09/15
Event Year : 2015
Event URL : http://conferences.cirm-math.fr/1107.html

Citation Data

DOI : 10.24350/CIRM.V.18829103
Cite this video as: de Roton, Anne (2015). $k$-sum free sets in $[0,1]$. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18829103
URI : http://dx.doi.org/10.24350/CIRM.V.18829103

Bibliography



Bookmarks Report an error