En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Viscous Hamilton-Jacobi equations in the superquadratic case

Bookmarks Report an error
Multi angle
Authors : Porretta, Alessio (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We discuss properties of the viscous Hamilton-Jacobi equation$$\begin{cases}u_{t}-\Delta u=|D u|^{p} & \text { in }(0, \infty) \times \Omega, \\ u=0 & \text { in }(0, \infty) \times \partial \Omega, \\ u(0)=u_{0} & \text { in } \Omega,\end{cases}$$in the super-quadratic case $p>2$. Here $\Omega$ is a bounded domain in $\mathbf{R}^{\mathbf{N}}$. In the super-quadratic regime, solutions may be continuous but with a gradient blow up; in this case the second order equation exhibits very peculiar phenomena. Some properties are similar to first order problems, such as loss of boundary conditions and appearance of singularities, but the presence of diffusion let singularities appear and disappear, in a very unusual way. In the talk I will present results obtained in collaboration with Philippe Souplet which describe the qualitative behavior of the solution, starting from smooth initial data. This includes the analysis of blow-up rates, blow-up profiles, life after blow-up, loss and recovery of boundary conditions.

Keywords : Viscous Hamilton-Jacobi eqautions; gradient blow-up

MSC Codes :
35B40 - Asymptotic behavior of solutions of PDE
35B60 - Continuation and prolongation of solutions of PDE, See also {58A15, 58A17, 58Hxx}
35B44 - Blow-up (PDE)

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 11/07/2022
    Conference Date : 16/06/2022
    Subseries : Research talks
    arXiv category : Analysis of PDEs
    Mathematical Area(s) : PDE
    Format : MP4 (.mp4) - HD
    Video Time : 00:44:34
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-06-16_Porreta.mp4

Information on the Event

Event Title : Inverse Problems and Control for PDEs and the Hamilton-Jacobi Equation / Problèmes inverses et contrôle des EDP, et équation de Hamilton-Jacobi
Event Organizers : Doubova, Anna ; Floridia, Giuseppe ; Soccorsi, Eric ; Yamamoto, Masahiro
Dates : 13/06/2022 - 17/06/2022
Event Year : 2022
Event URL : https://conferences.cirm-math.fr/2561.html

Citation Data

DOI : 10.24350/CIRM.V.19934003
Cite this video as: Porretta, Alessio (2022). Viscous Hamilton-Jacobi equations in the superquadratic case. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19934003
URI : http://dx.doi.org/10.24350/CIRM.V.19934003

See Also

Bibliography

  • PORRETTA, Alessio et SOUPLET, Philippe. Analysis of the loss of boundary conditions for the diffusive Hamilton–Jacobi equation. Annales de l'Institut Henri Poincaré C, 2017, vol. 34, no 7, p. 1913-1923. - https://doi.org/10.1016/j.anihpc.2017.02.001

  • PORRETTA, Alessio et SOUPLET, Philippe. Blow-up and regularization rates, loss and recovery of boundary conditions for the superquadratic viscous Hamilton-Jacobi equation. Journal de Mathématiques Pures et Appliquées, 2020, vol. 133, p. 66-117. - https://doi.org/10.1016/j.matpur.2019.02.014



Imagette Video

Bookmarks Report an error