En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Conditional independence in extremes

Bookmarks Report an error
Multi angle
Authors : Strokorb, Kirstin (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Statistical modelling of complex dependencies in extreme events requires meaningful sparsity structures in multivariate extremes. In this context two perspectives on conditional independence and graphical models have recently emerged: One that focuses on threshold exceedances and multivariate pareto distributions, and another that focuses on max-linear models and directed acyclic graphs. What connects these notions is the exponent measure that lies at the heart of each approach. In this work we develop a notion of conditional independence defined directly on the exponent measure (and even more generally on measures that explode at the origin) that extends recent work of Engelke and Hitz (2019), who had been confined to homogeneous measures with density. We prove easier checkable equivalent conditions to verify this new conditional independence in terms of a reduction to simple test classes, probability kernels and density factorizations. This provides a pathsway to graphical modelling among general multivariate (max-)infinitely distributions. Structural max-linear models turn out to form a Bayesian network with respect to our new form of conditional independence.

Keywords : graphical models; conditional independence; exponent measure; Lévy measure; exploding measure, extreme values; stability

MSC Codes :
60G51 - Processes with independent increments; Lévy processes
60G70 - Extreme value theory; extremal processes
62H22 - Probabilistic graphical models

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 10/10/2022
    Conference Date : 26/09/2022
    Subseries : Research talks
    arXiv category : Probability
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:36:34
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-09-26 Strokorb.mp4

Information on the Event

Event Title : Adaptive and High-Dimensional Spatio-Temporal Methods for Forecasting / Méthodes spatio-temporelles adaptatives et en grande dimension pour la prédiction
Event Organizers : Bardet, Jean-Marc ; Naveau, Philippe ; Subba Rao, Suhasini ; Veraart, Almut ; von Sachs, Rainer
Dates : 26/09/2022 - 30/09/2022
Event Year : 2022
Event URL : https://conferences.cirm-math.fr/2619.html

Citation Data

DOI : 10.24350/CIRM.V.19961703
Cite this video as: Strokorb, Kirstin (2022). Conditional independence in extremes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19961703
URI : http://dx.doi.org/10.24350/CIRM.V.19961703

See Also

Bibliography

  • AMÉNDOLA, Carlos, KLÜPPELBERG, Claudia, LAURITZEN, Steffen, et al. Conditional independence in max-linear Bayesian networks. The Annals of Applied Probability, 2022, vol. 32, no 1, p. 1-45. - http://dx.doi.org/10.1214/21-AAP1670

  • ENGELKE, Sebastian et HITZ, Adrien S. Graphical models for extremes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2020, vol. 82, no 4, p. 871-932. - https://doi.org/10.1111/rssb.12355

  • LAURITZEN, Steffen L. Graphical models. Clarendon Press, 1996. -



Imagette Video

Bookmarks Report an error