Non-convex SGD and Lojasiewicz-type conditions for deep learning
Loading the player...
|
Information on the Video
Film maker : Hennenfent, GuillaumeLanguage : English Available date : 10/11/2022 Conference Date : 04/10/2022 Subseries : Research talks arXiv category : Machine Learning Mathematical Area(s) : Computer Science ; Control Theory & Optimization Format : MP4 (.mp4) - HD Video Time : 00:47:22 Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students Download : https://videos.cirm-math.fr/2022-10-04_Scaman.mp4 |
Information on the Event
Event Title : Learning and Optimization in Luminy - LOL2022 / Apprentissage et Optimisation à Luminy - LOL2022Event Organizers : Boyer, Claire ; d'Aspremont, Alexandre ; Dieuleveut, Aymeric ; Moreau, Thomas ; Villar, Soledad Dates : 03/10/2022 - 07/10/2022 Event Year : 2022 Event URL : https://conferences.cirm-math.fr/2551.html
Citation Data
DOI : 10.24350/CIRM.V.19965303Cite this video as: Scaman, Kevin (2022). Non-convex SGD and Lojasiewicz-type conditions for deep learning. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19965303 URI : http://dx.doi.org/10.24350/CIRM.V.19965303 |
Imagette Video