En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Local index theory for Lorentzian manifolds

Bookmarks Report an error
Multi angle
Authors : Bär, Christian (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We prove a local version of the index theorem for Dirac-type operators on globally hyperbolic Lorentzian manifolds with Cauchy boundary. In case the Cauchy hypersurface is compact, we do not assume self-adjointness of the Dirac operator on the spacetime or of the associated elliptic Dirac operator on the boundary.In this case, integration of our local index theorem results in a generalization of previously known index theorems for globally hyperbolic spacetimes that allows for twisting bundles associated with non-compact gauge groups. This is joint work with Alexander Strohmaier.

Keywords : Dirac-type operator; globally hyperbolic Lorentzian

MSC Codes :
35L05 - Wave equation (hyperbolic PDE)
58J20 - Index theory and related fixed point theorems
58J32 - Boundary value problems on manifolds
58J45 - Hyperbolic equations
35L02 - First-order hyperbolic equations

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 12/04/2022
    Conference Date : 29/03/2022
    Subseries : Research talks
    arXiv category : Differential Geometry ; Mathematical Physics
    Mathematical Area(s) : PDE ; Geometry ; Mathematical Physics
    Format : MP4 (.mp4) - HD
    Video Time : 00:58:38
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-03-29_Bar.mp4

Information on the Event

Event Title : Geometry and analysis on non-compact manifolds / Géométrie et analyse sur les variétés non compactes
Event Organizers : Ammann, Bernd ; Carron, Gilles ; Groe, Nadine ; Nistor, Victor
Dates : 28/03/2022 - 01/04/2022
Event Year : 2022
Event URL : https://conferences.cirm-math.fr/2548.html

Citation Data

DOI : 10.24350/CIRM.V.19902003
Cite this video as: Bär, Christian (2022). Local index theory for Lorentzian manifolds. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19902003
URI : http://dx.doi.org/10.24350/CIRM.V.19902003

See Also

Bibliography

  • BÄR, Christian et STROHMAIER, Alexander. A rigorous geometric derivation of the chiral anomaly in curved backgrounds. Communications in Mathematical Physics, 2016, vol. 347, no 3, p. 703-721. - https://doi.org/10.1007/s00220-016-2664-1

  • BÄR, Christian et STROHMAIER, Alexander. An index theorem for Lorentzian manifolds with compact spacelike Cauchy boundary. American Journal of Mathematics, 2019, vol. 141, no 5, p. 1421-1455. - https://doi.org/10.1353/ajm.2019.0037

  • BÄR, Christian et STROHMAIER, Alexander. Local index theory for Lorentzian manifolds. arXiv preprint arXiv:2012.01364, 2020. - https://arxiv.org/abs/2012.01364



Bookmarks Report an error