En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Fourier-Mukai partners of canonical covers in positive characteristic

Bookmarks Report an error
Multi angle
Authors : Tirabassi, Sofia (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We show that surfaces arising as canonical covers of Enriques and bielliptic surfaces do not have any non-trivial Fourier–Mukai partner, extending result of Sosna for complex surfaces. This is a joint work with K. Honigs and L. Lombardi.

MSC Codes :
14F05 - Sheaves, derived categories of sheaves and related constructions
14J28 - $K3$ surfaces and Enriques surfaces
14G17 - Positive characteristic ground fields
14K12 - Subvarieties of abelian varieties

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 20/09/16
    Conference Date : 13/09/16
    Subseries : Research talks
    arXiv category : Algebraic Geometry
    Mathematical Area(s) : Algebraic & Complex Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:46:24
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2016-09-13_Tirabassi.mp4

Information on the Event

Event Title : Higher dimensional algebraic geometry and characteristic p > 0 / Géométrie algébrique en dimension supérieure et caractéristique p > 0
Event Organizers : Blickle, Manuel ; Schwede, Karl ; Xu, Chenyang
Dates : 12/09/16 - 16/09/16
Event Year : 2016
Event URL : http://conferences.cirm-math.fr/1376.html

Citation Data

DOI : 10.24350/CIRM.V.19049503
Cite this video as: Tirabassi, Sofia (2016). Fourier-Mukai partners of canonical covers in positive characteristic. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19049503
URI : http://dx.doi.org/10.24350/CIRM.V.19049503

See Also

Bibliography

  • Honigs, K., Lombardi, L., Tirabassi, S. (2016). Derived equivalences of canonical covers of hyperelliptic and Enriques surfaces in positive characteristic. - https://arxiv.org/abs/1606.02094



Bookmarks Report an error