https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - 25+ years of wavelets for PDEs
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

25+ years of wavelets for PDEs

Bookmarks Report an error
Post-edited
Authors : Kunoth, Angela (Author of the conference)
CIRM (Publisher )

Loading the player...
wavelets in image processing wavelets definition elliptic PDEs beyond finite elements convergence and complexity optimal control Questions of the audience

Abstract : Ingrid Daubechies' construction of orthonormal wavelet bases with compact support published in 1988 started a general interest to employ these functions also for the numerical solution of partial differential equations (PDEs). Concentrating on linear elliptic and parabolic PDEs, I will start from theoretical topics such as the well-posedness of the problem in appropriate function spaces and regularity of solutions and will then address quality and optimality of approximations and related concepts from approximation the- ory. We will see that wavelet bases can serve as a basic ingredient, both for the theory as well as for algorithmic realizations. Particularly for situations where solutions exhibit singularities, wavelet concepts enable adaptive appproximations for which convergence and optimal algorithmic complexity can be established. I will describe corresponding implementations based on biorthogonal spline-wavelets.
Moreover, wavelet-related concepts have triggered new developments for efficiently solving complex systems of PDEs, as they arise from optimization problems with PDEs.

MSC Codes :
49J20 - Optimal control problems involving partial differential equations
65N12 - Stability and convergence of numerical methods (BVP of PDE)
65N30 - Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65T60 - Wavelets (numerical methods)
94A08 - Image processing (compression, reconstruction, etc.)

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 27/09/2016
    Conference Date : 20/09/2016
    Subseries : Research talks
    arXiv category : Analysis of PDEs ; Numerical Analysis
    Mathematical Area(s) : PDE ; Analysis and its Applications ; Numerical Analysis & Scientific Computing
    Format : MP4 (.mp4) - HD
    Video Time : 00:52:07
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2016-09-20_Kunoth.mp4

Information on the Event

Event Title : Multivariate approximation and interpolation with applications - MAIA / Approximation et interpolation à plusieurs variables et applications - MAIA
Event Organizers : Bouhamadi, Abderrahman ; Cohen, Albert ; Conti, Costanza ; Rabut, Christophe
Dates : 19/09/2016 - 23/09/2016
Event Year : 2016
Event URL : http://conferences.cirm-math.fr/1444.html

Citation Data

DOI : 10.24350/CIRM.V.19051403
Cite this video as: Kunoth, Angela (2016). 25+ years of wavelets for PDEs. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19051403
URI : http://dx.doi.org/10.24350/CIRM.V.19051403

See Also

Bibliography



Bookmarks Report an error