En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Shrinking targets on homogeneous spaces and improving Dirichlet's Theorem

Bookmarks Report an error
Multi angle
Authors : Kleinbock, Dmitry (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Optimal results on the improvements to Dirichlet's Theorem are obtained in the one-dimensional case. For simultaneous approximation the problem is open. I will describe reduction of the problem to dynamics both in one-dimensional case (via continued fractions) and for higher dimensions (via diagonal flows on the space of lattices). If time allows I'll mention an inhomogeneous version which is easier than the homogeneous one. Joint work with Nick Wadleigh.

MSC Codes :
11J04 - Homogeneous approximation to one number
11J70 - Continued fractions and generalizations
22F30 - Homogeneous spaces
37A17 - Homogeneous flows

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 15/02/17
    Conference Date : 08/02/17
    Subseries : Research School
    arXiv category : Number Theory ; Dynamical Systems
    Mathematical Area(s) : Dynamical Systems & ODE ; Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 01:05:27
    Targeted Audience : Researchers ; Graduate Students
    Download : https://videos.cirm-math.fr/2017-02-08_Kleinbock.mp4

Information on the Event

Event Title : Homogeneous spaces, diophantine approximation and stationary measures / Espaces homogenes. Approximation diophantienne. Mesures stationnaires
Event Organizers : Adamczewski, Boris ; Athreya, Jayadev ; Mercat, Paul ; Palesi, Frédéric
Dates : 06/02/17 - 10/02/17
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1712.html

Citation Data

DOI : 10.24350/CIRM.V.19118903
Cite this video as: Kleinbock, Dmitry (2017). Shrinking targets on homogeneous spaces and improving Dirichlet's Theorem. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19118903
URI : http://dx.doi.org/10.24350/CIRM.V.19118903

See Also

Bibliography



Bookmarks Report an error