En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

A 2d growth model in the anisotropic KPZ class

Bookmarks Report an error
Multi angle
Authors : Toninelli, Fabio (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Dimer models provide natural models of (2+1)-dimensional random discrete interfaces and of stochastic interface dynamics. I will discuss two examples of such dynamics, a reversible one and a driven one (growth process). In both cases we can prove the convergence of the stochastic interface evolution to a deterministic PDE after suitable (diffusive or hyperbolic respectively in the two cases) space-time rescaling.
Based on joint work with B. Laslier and M. Legras.

MSC Codes :
60K35 - Interacting random processes; statistical mechanics type models; percolation theory
82C20 - Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 04/05/2017
    Conference Date : 25/04/2017
    Subseries : Research talks
    arXiv category : Probability ; Mathematical Physics
    Mathematical Area(s) : Probability & Statistics ; Mathematical Physics
    Format : MP4 (.mp4) - HD
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-04-25_Toninelli.mp4

Information on the Event

Event Title : Jean-Morlet Chair: Qualitative methods in KPZ universality / Chaire Jean Morlet : Méthodes qualitatives dans la classe d'universalité KPZ
Event Organizers : Alberts, Tom ; Bakhtin, Yuri ; Cator, Eric ; Dolgopyat, Dmitry ; Khanin, Konstantin ; Shlosman, Senya
Dates : 24/04/2017 - 28/04/2017
Event Year : 2017
Event URL : https://www.chairejeanmorlet.com/1558.html

Citation Data

DOI : 10.24350/CIRM.V.19161703
Cite this video as: Toninelli, Fabio (2017). A 2d growth model in the anisotropic KPZ class. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19161703
URI : http://dx.doi.org/10.24350/CIRM.V.19161703

See Also

Bibliography



Bookmarks Report an error