En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Angles of Gaussian primes

Bookmarks Report an error
Multi angle
Authors : ... (Author of the conference)
... (Publisher )

Loading the player...

Abstract : Fermat showed that every prime $p = 1$ mod $4$ is a sum of two squares: $p = a^2 + b^2$, and hence such a prime gives rise to an angle whose tangent is the ratio $b/a$. Hecke showed, in 1919, that these angles are uniformly distributed, and uniform distribution in somewhat short arcs was given in by Kubilius in 1950 and refined since then. I will discuss the statistics of these angles on fine scales and present a conjecture, motivated by a random matrix model and by function field considerations.

MSC Codes :
11F66 - Langlands L-functions; one variable Dirichlet series and functional equations
11M06 - $ \zeta (s)$ and $L(s, \chi)$
11M26 - Nonreal zeros of $ \zeta (s)$ and $L(s, \chi)$; Riemann and other hypotheses
11R44 - Distribution of prime ideals
11T55 - Arithmetic theory of polynomial rings over finite fields
11M50 - Relations with random matrices

    Information on the Video

    Language : English
    Available date : 01/06/17
    Conference Date : 24/05/17
    Subseries : Research talks
    arXiv category : Number Theory
    Mathematical Area(s) : Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:42:13
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-05-24_Rudnick.mp4

Information on the Event

Event Title : Prime numbers and automatic sequences: determinism and randomness / Nombres premiers et suites automatiques : aléa et déterminisme
Dates : 22/05/17 - 26/05/17
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1595.html

Citation Data

DOI : 10.24350/CIRM.V.19171503
Cite this video as: (2017). Angles of Gaussian primes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19171503
URI : http://dx.doi.org/10.24350/CIRM.V.19171503

See Also

Bibliography



Bookmarks Report an error