En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Bounded remainder sets for the discrete and continuous irrational rotation

Bookmarks Report an error
Multi angle
Authors : Grepstad, Sigrid (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Let $\alpha$ $\epsilon$ $\mathbb{R}^d$ be a vector whose entries $\alpha_1, . . . , \alpha_d$ and $1$ are linearly independent over the rationals. We say that $S \subset \mathbb{T}^d$ is a bounded remainder set for the sequence of irrational rotations $\lbrace n\alpha\rbrace_{n\geqslant1}$ if the discrepancy
$ \sum_{k=1}^{N}1_S (\lbrace k\alpha\rbrace) - N$ $mes(S)$
is bounded in absolute value as $N \to \infty$. In one dimension, Hecke, Ostrowski and Kesten characterized the intervals with this property.
We will discuss the bounded remainder property for sets in higher dimensions. In particular, we will see that parallelotopes spanned by vectors in $\mathbb{Z}\alpha + \mathbb{Z}^d$ have bounded remainder. Moreover, we show that this condition can be established by exploiting a connection between irrational rotation on $\mathbb{T}^d$ and certain cut-and-project sets. If time allows, we will discuss bounded remainder sets for the continuous irrational rotation $\lbrace t \alpha : t$ $\epsilon$ $\mathbb{R}^+\rbrace$ in two dimensions.

MSC Codes :
11J71 - Distribution modulo one
11K06 - General theory of distribution modulo 1
11K38 - Irregularities of distribution, discrepancy

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 01/06/17
    Conference Date : 25/05/17
    Subseries : Research talks
    arXiv category : Number Theory
    Mathematical Area(s) : Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:32:39
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-05-25_Grepstad.mp4

Information on the Event

Event Title : Prime numbers and automatic sequences: determinism and randomness / Nombres premiers et suites automatiques : aléa et déterminisme
Event Organizers : Dartyge, Cécile ; Drmota, Michael ; Martin, Bruno ; Mauduit, Christian ; Rivat, Joël ; Stoll, Thomas
Dates : 22/05/17 - 26/05/17
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1595.html

Citation Data

DOI : 10.24350/CIRM.V.19172203
Cite this video as: Grepstad, Sigrid (2017). Bounded remainder sets for the discrete and continuous irrational rotation. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19172203
URI : http://dx.doi.org/10.24350/CIRM.V.19172203

See Also

Bibliography



Bookmarks Report an error