En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

On stability of type II blow up solutions for the critical nonlinear wave equation

Bookmarks Report an error
Multi angle
Authors : Krieger, Joachim (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The talk will discuss a recent result showing that certain type II blow up solutions constructed by Krieger-Schlag-Tataru are actually stable under small perturbations along a co-dimension one Lipschitz hypersurface in a suitable topology. This result is qualitatively optimal.
Joint work with Stefano Burzio (EPFL).

MSC Codes :
35B40 - Asymptotic behavior of solutions of PDE
35L05 - Wave equation (hyperbolic PDE)

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 13/07/17
    Conference Date : 06/07/17
    Subseries : Research talks
    arXiv category : Analysis of PDEs ; Mathematical Physics
    Mathematical Area(s) : PDE ; Mathematical Physics
    Format : MP4 (.mp4) - HD
    Video Time : 00:49:31
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-07-06_Krieger.mp4

Information on the Event

Event Title : Asymptotic analysis of evolution equations / Analyse asymptotique des équations d'évolution
Event Organizers : Burq, Nicolas ; Delort, Jean-Marc ; Gérard, Patrick ; Koch, Herbert ; Thomann, Laurent
Dates : 03/07/17 - 07/07/17
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1546.html

Citation Data

DOI : 10.24350/CIRM.V.19193003
Cite this video as: Krieger, Joachim (2017). On stability of type II blow up solutions for the critical nonlinear wave equation. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19193003
URI : http://dx.doi.org/10.24350/CIRM.V.19193003

See Also

Bibliography



Bookmarks Report an error