https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Integral points on Markoff type cubic surfaces and dynamics
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Integral points on Markoff type cubic surfaces and dynamics

Bookmarks Report an error
Post-edited
Authors : Sarnak, Peter (Author of the conference)
CIRM (Publisher )

Loading the player...
integral points on hypersurfaces 3 and higher dimensions cubic surfaces Markoff surfaces and dynamics diophantine analysis of Markoff surfaces integral points on a fixed surface and strong approximation connection to Painlevé strong approximation - the basic conjecture results towards the main conjecture Markoff numbers outline of some points in the proofs

Abstract : Cubic surfaces in affine three space tend to have few integral points .However certain cubics such as $x^3 + y^3 + z^3 = m$, may have many such points but very little is known. We discuss these questions for Markoff type surfaces: $x^2 +y^2 +z^2 -x\cdot y\cdot z = m$ for which a (nonlinear) descent allows for a study. Specifically that of a Hasse Principle and strong approximation, together with "class numbers" and their averages for the corresponding nonlinear group of morphims of affine three space.

MSC Codes :
11G05 - Elliptic curves over global fields
37A45 - Relations of ergodic theory with number theory and harmonic analysis

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 06/01/17
    Conference Date : 12/12/16
    Subseries : Research talks
    arXiv category : Number Theory ; Dynamical Systems
    Mathematical Area(s) : Dynamical Systems & ODE ; Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 01:02:29
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2016-12-12_Sarnak.mp4

Information on the Event

Event Title : Jean-Morlet Chair: Ergodic theory and its connections with arithmetic and combinatorics / Chaire Jean Morlet : Théorie ergodique et ses connexions avec l'arithmétique et la combinatoire
Event Organizers : Cassaigne, Julien ; Ferenczi, Sébastien ; Hubert, Pascal ; Kulaga-Przymus, Joanna ; Lemanczyk, Mariusz
Dates : 12/12/16 - 16/12/16
Event Year : 2016
Event URL : https://www.chairejeanmorlet.com/1553.html

Citation Data

DOI : 10.24350/CIRM.V.19100603
Cite this video as: Sarnak, Peter (2016). Integral points on Markoff type cubic surfaces and dynamics. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19100603
URI : http://dx.doi.org/10.24350/CIRM.V.19100603

See Also

Bibliography



Bookmarks Report an error