En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

The diameter of the symmetric group: ideas and tools

Bookmarks Report an error
Multi angle
Authors : Helfgott, Harald (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Given a finite group $G$ and a set $A$ of generators, the diameter diam$(\Gamma(G, A))$ of the Cayley graph $\Gamma(G, A)$ is the smallest $\ell$ such that every element of $G$ can be expressed as a word of length at most $\ell$ in $A \cup A^{-1}$. We are concerned with bounding diam$(G) := max_A$ diam$(\Gamma(G, A))$.
It has long been conjectured that the diameter of the symmetric group of degree $n$ is polynomially bounded in $n$. In 2011, Helfgott and Seress gave a quasipolynomial bound, namely, $O\left (e^{(log n)^{4+\epsilon}}\right )$. We will discuss a recent, much simplified version of the proof.

MSC Codes :
05C25 - Graphs and abstract algebra (groups, rings, fields, etc.)
20B05 - General theory for finite groups
20B30 - Symmetric groups
20D60 - Arithmetic and combinatorial problems
20F69 - asymptotic properties of groups

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 06/01/17
    Conference Date : 13/12/16
    Subseries : Research talks
    arXiv category : Group Theory ; Combinatorics
    Mathematical Area(s) : Combinatorics ; Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:48:04
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2016-12-13_Helfgott.mp4

Information on the Event

Event Title : Jean-Morlet Chair: Ergodic theory and its connections with arithmetic and combinatorics / Chaire Jean Morlet : Théorie ergodique et ses connexions avec l'arithmétique et la combinatoire
Event Organizers : Cassaigne, Julien ; Ferenczi, Sébastien ; Hubert, Pascal ; Kulaga-Przymus, Joanna ; Lemanczyk, Mariusz
Dates : 12/12/16 - 16/12/16
Event Year : 2016
Event URL : https://www.chairejeanmorlet.com/1553.html

Citation Data

DOI : 10.24350/CIRM.V.19101303
Cite this video as: Helfgott, Harald (2016). The diameter of the symmetric group: ideas and tools. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19101303
URI : http://dx.doi.org/10.24350/CIRM.V.19101303

See Also

Bibliography



Bookmarks Report an error