En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Groups with Bowditch boundary a 2-sphere

Bookmarks Report an error
Multi angle
Authors : Tshishiku, Bena (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Bestvina-Mess showed that the duality properties of a group $G$ are encoded in any boundary that gives a Z-compactification of $G$. For example, a hyperbolic group with Gromov boundary an $n$-sphere is a PD$(n+1)$ group. For relatively hyperbolic pairs $(G,P)$, the natural boundary - the Bowditch boundary - does not give a Z-compactification of G. Nevertheless we show that if the Bowditch boundary of $(G,P)$ is a 2-sphere, then $(G,P)$ is a PD(3) pair.
This is joint work with Genevieve Walsh.

MSC Codes :
20F65 - Geometric group theory
20F67 - Hyperbolic groups and nonpositively curved groups
57M07 - Topological methods in group theory
57M50 - Geometric structures on low-dimensional manifolds

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 07/03/2018
    Conference Date : 27/02/2018
    Subseries : Research talks
    arXiv category : Group Theory
    Mathematical Area(s) : Topology ; Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:58:16
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-02-27_Tshishiku.mp4

Information on the Event

Event Title : Jean-Morlet chair: Structure of 3-manifold groups / Chaire Jean-Morlet : Structures des groupes de 3-variétés
Event Organizers : Haïssinsky, Peter ; Paoluzzi, Luisa ; Walsh, Genevieve
Dates : 26/02/2018 - 02/03/2018
Event Year : 2018
Event URL : https://www.chairejeanmorlet.com/1904.html

Citation Data

DOI : 10.24350/CIRM.V.19368003
Cite this video as: Tshishiku, Bena (2018). Groups with Bowditch boundary a 2-sphere. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19368003
URI : http://dx.doi.org/10.24350/CIRM.V.19368003

Bibliography



Bookmarks Report an error