En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Manage my selections

  • z

    Destination de la recherche

    Raccourcis

    2

    Approximation and calibration of laws of solutions to stochastic differential equations

    Bookmarks Report an error
    Post-edited
    Authors : Bion-Nadal, Jocelyne (Author of the conference)
    CIRM (Publisher )

    This video file cannot be played.(Error Code: 102630)
    coupling measure new Wasserstein type distance Hamilton-Jacobi-Bellman equation one dimensional case Hölder regular multidimensional case Kakutani fixed point method approximation by diffusion laws optimal coupling measure

    Abstract : In many situations where stochastic modeling is used, one desires to choose the coefficients of a stochastic differential equation which represents the reality as simply as possible. For example one desires to approximate a diffusion model
    with high complexity coefficients by a model within a class of simple diffusion models. To achieve this goal, we introduce a new Wasserstein type distance on the set of laws of solutions to d-dimensional stochastic differential equations.
    This new distance W~2 is defined similarly to the classical Wasserstein distance W~2 but the set of couplings is restricted to the set of laws of solutions of 2d-dimensional stochastic differential equations. We prove that this new distance W~2 metrizes the weak topology. Furthermore this distance W~2 is characterized in terms of a stochastic control problem. In the case d = 1 we can construct an explicit solution. The multi-dimensional case, is more tricky and classical results do not apply to solve the HJB equation because of the degeneracy of the differential operator. Nevertheless, we prove that this HJB equation admits a regular solution.

    Keywords : stochatic differential equation; Wasserstein distance

    MSC Codes :
    60H15 - Stochastic partial differential equations
    60H30 - Applications of stochastic analysis (to PDE, etc.)
    60J60 - Diffusion processes
    91B70 - Stochastic models in economics
    93E20 - Optimal stochastic control

      Information on the Video

      Film maker : Hennenfent, Guillaume
      Language : English
      Available date : 18/09/2018
      Conference Date : 04/09/2018
      Subseries : Research talks
      arXiv category : Probability
      Mathematical Area(s) : Probability & Statistics
      Format : MP4 (.mp4) - HD
      Video Time : 00:29:37
      Targeted Audience : Researchers
      Download : https://videos.cirm-math.fr/2018-09-04_Bion_Nadal.mp4

    Information on the Event

    Event Title : Innovative Research in Mathematical Finance / Recherche innovante en mathématiques financières
    Event Organizers : Callegaro, Giorgia ; Jeanblanc, Monique ; Lépinette, Emmanuel ; Molchanov, Ilya ; Schweizer, Martin ; Touzi, Nizar
    Dates : 03/09/2018 - 07/09/2018
    Event Year : 2018
    Event URL : https://conferences.cirm-math.fr/1816.html

    Citation Data

    DOI : 10.24350/CIRM.V.19442903
    Cite this video as: Bion-Nadal, Jocelyne (2018). Approximation and calibration of laws of solutions to stochastic differential equations. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19442903
    URI : http://dx.doi.org/10.24350/CIRM.V.19442903

    See Also

    Bibliography



    Bookmarks Report an error
    Close