https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Mahler's method in several variables
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Mahler's method in several variables

Bookmarks Report an error
Post-edited
Authors : Adamczewski, Boris (Author of the conference)
CIRM (Publisher )

Loading the player...
natural numbers - finite automata Cobham's theorem real numbers - finite automata decimal expansion of classical constants independence of automatic real numbers Mahler functions Ku. Nishioka's theorem Mahler method in several variables lifting theorem purity theorem

Abstract : Any algebraic (resp. linear) relation over the field of rational functions with algebraic coefficients between given analytic functions leads by specialization to algebraic (resp. linear) relations over the field of algebraic numbers between the values of these functions. Number theorists have long been interested in proving results going in the other direction. Though the converse result is known to be false in general, Mahler's method provides one of the few known instances where it essentially holds true. After the works of Nishioka, and more recently of Philippon, Faverjon and the speaker, the theory of Mahler functions in one variable is now rather well understood. In contrast, and despite the contributions of Mahler, Loxton and van der Poorten, Kubota, Masser, and Nishioka among others, the theory of Mahler functions in several variables remains much less developed. In this talk, I will discuss recent progresses concerning the case of regular singular systems, as well as possible applications of this theory. This is a joint work with Colin Faverjon.

MSC Codes :
11B85 - Automata sequences
11J81 - Transcendence (general theory)
11J85 - Algebraic independence; Gel'fond's method

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 18/09/2018
    Conference Date : 12/09/2018
    Subseries : Research talks
    arXiv category : Number Theory ; Combinatorics
    Mathematical Area(s) : Combinatorics ; Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:38:47
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-09-12_Adamczewski.mp4

Information on the Event

Event Title : Diophantine approximation and transcendence / Approximation diophantienne et transcendance
Event Organizers : Adamczewski, Boris ; Bugeaud, Yann ; Habegger, Philipp ; Laurent, Michel ; Zannier, Umberto
Dates : 10/09/2018 - 14/09/2018
Event Year : 2018
Event URL : https://conferences.cirm-math.fr/1841.html

Citation Data

DOI : 10.24350/CIRM.V.19445203
Cite this video as: Adamczewski, Boris (2018). Mahler's method in several variables. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19445203
URI : http://dx.doi.org/10.24350/CIRM.V.19445203

See Also

Bibliography

  • Adamczewski, B., & Faverjon, C. (2018). Mahler's method in several variables I: The theory of regular singular systems. - https://arxiv.org/abs/1809.04823

  • Adamczewski, B., & Faverjon, C. (2018). Mahler's method in several variables II: Applications to base change problems and finite automata. - https://arxiv.org/abs/1809.04826



Bookmarks Report an error