En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Random section of line bundles over real Riemann surfaces

Bookmarks Report an error
Multi angle
Authors : Ancona, Michele (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Given a line bundle $L$ over a real Riemann surface, we study the number of real zeros of a random section of $L$. We prove a rarefaction result for sections whose number of real zeros deviates from the expected one.

Keywords : Riemann surfaces; random line bundles; zeros of random holomorphic sections

MSC Codes :
32A60 - Zero sets of holomorphic functions
53C65 - Integral geometry
60D05 - Geometric probability and stochastic geometry

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 09/01/2019
    Conference Date : 20/12/2018
    Subseries : Research talks
    arXiv category : Algebraic Geometry ; Probability
    Mathematical Area(s) : Analysis and its Applications ; Algebraic & Complex Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:53:09
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-12-20_Ancona.mp4

Information on the Event

Event Title : Algebraic geometry and complex geometry / Géométrie algébrique et géométrie complexe
Event Organizers : Benoist, Olivier ; Pasquier, Boris
Dates : 17/12/2018 - 21/12/2018
Event Year : 2018
Event URL : https://conferences.cirm-math.fr/1858.html

Citation Data

DOI : 10.24350/CIRM.V.19484603
Cite this video as: Ancona, Michele (2018). Random section of line bundles over real Riemann surfaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19484603
URI : http://dx.doi.org/10.24350/CIRM.V.19484603

See Also

Bibliography



Imagette Video

Bookmarks Report an error