Authors : Nualart, Eulalia (Author of the conference)
CIRM (Publisher )
Abstract :
Consider the following stochastic heat equation,
\[
\frac{\partial u_t(x)}{\partial t}=-\nu(-\Delta)^{\alpha/2} u_t(x)+\sigma(u_t(x))\dot{F}(t,\,x), \quad t>0, \; x \in \mathbb{R}^d.
\]
Here $-\nu(-\Delta)^{\alpha/2}$ is the fractional Laplacian with $\nu>0$ and $\alpha \in (0,2]$, $\sigma: \mathbb{R}\rightarrow \mathbb{R}$ is a globally Lipschitz function, and $\dot{F}(t,\,x)$ is a Gaussian noise which is white in time and colored in space. Under some suitable conditions, we will explore the effect of the initial data on the spatial asymptotic properties of the solution. We also prove a strong comparison principle thus filling an important gap in the literature.
Joint work with Mohammud Foondun (University of Strathclyde).
MSC Codes :
35R60
- PDEs with randomness, stochastic PDE
60H15
- Stochastic partial differential equations
60J55
- Local time and additive functionals
Additional resources :
https://www.cirm-math.fr/ProgWeebly/Renc1742/Nualart.pdf
Film maker : Hennenfent, Guillaume
Language : English
Available date : 22/05/2018
Conference Date : 16/05/2018
Subseries : Research talks
arXiv category : Probability ; Analysis of PDEs
Mathematical Area(s) : Probability & Statistics ; PDE
Format : MP4 (.mp4) - HD
Video Time : 00:39:30
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2018-05-16_Nualart.mp4
|
Event Title : Stochastic partial differential equations / Equations aux dérivées partielles stochastiques Event Organizers : Berglund, Nils ; Debussche, Arnaud ; Delarue, François ; Kuehn, Christian Dates : 14/05/2018 - 18/05/2018
Event Year : 2018
Event URL : https://conferences.cirm-math.fr/1742.html
DOI : 10.24350/CIRM.V.19402003
Cite this video as:
Nualart, Eulalia (2018). Asymptotics for some non-linear stochastic heat equations. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19402003
URI : http://dx.doi.org/10.24350/CIRM.V.19402003
|
See Also
Bibliography
- Chen, L., Khoshnevisan, D., & Kim, K. (2017). A boundedness trichotomy for the stochastic heat equation. Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, 53(4), 1991-2004 - https://doi.org/10.1214/16-AIHP780
- Chen, L., & Huang, J. (2016). Comparison principle for stochastic heat equation on $\mathbb {R}^ d$. - https://arxiv.org/abs/1607.03998
- Chen, L., & Kim, K. (2017). On comparison principle and strict positivity of solutions to the nonlinear stochastic fractional heat equations. Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, 53(1), 358-388 - http://dx.doi.org/10.1214/15-AIHP719
- Chen, L. (2016). Spatial asymptotics for the parabolic Anderson models with generalized time–space Gaussian noise. The Annals of Probability, 44(2), 1535-1598 - http://dx.doi.org/10.1214/15-AOP1006
- Conus, D., Joseph, M., & Khoshnevisan, D. (2013). On the chaotic character of the stochastic heat equation, before the onset of intermitttency. The Annals of Probability, 41(3B), 2225-2260 - https://doi.org/10.1214/11-AOP717
- Foondun, M., Li, S.-T., & Joseph, M. (2016). An approximation result for a class of stochastic heat equations with colored noise. - https://arxiv.org/abs/1611.06829
- Mueller, C. (1991). On the support of solutions to the heat equation with noise. Stochastics and Stochastic Reports, 37(4), 225-245 - https://doi.org/10.1080/17442509108833738