En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Asymptotics for some non-linear stochastic heat equations

Bookmarks Report an error
Multi angle
Authors : Nualart, Eulalia (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Consider the following stochastic heat equation,
\[
\frac{\partial u_t(x)}{\partial t}=-\nu(-\Delta)^{\alpha/2} u_t(x)+\sigma(u_t(x))\dot{F}(t,\,x), \quad t>0, \; x \in \mathbb{R}^d.
\]
Here $-\nu(-\Delta)^{\alpha/2}$ is the fractional Laplacian with $\nu>0$ and $\alpha \in (0,2]$, $\sigma: \mathbb{R}\rightarrow \mathbb{R}$ is a globally Lipschitz function, and $\dot{F}(t,\,x)$ is a Gaussian noise which is white in time and colored in space. Under some suitable conditions, we will explore the effect of the initial data on the spatial asymptotic properties of the solution. We also prove a strong comparison principle thus filling an important gap in the literature.
Joint work with Mohammud Foondun (University of Strathclyde).

MSC Codes :
35R60 - PDEs with randomness, stochastic PDE
60H15 - Stochastic partial differential equations
60J55 - Local time and additive functionals

Additional resources :
https://www.cirm-math.fr/ProgWeebly/Renc1742/Nualart.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 22/05/2018
    Conference Date : 16/05/2018
    Subseries : Research talks
    arXiv category : Probability ; Analysis of PDEs
    Mathematical Area(s) : Probability & Statistics ; PDE
    Format : MP4 (.mp4) - HD
    Video Time : 00:39:30
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-05-16_Nualart.mp4

Information on the Event

Event Title : Stochastic partial differential equations / Equations aux dérivées partielles stochastiques
Event Organizers : Berglund, Nils ; Debussche, Arnaud ; Delarue, François ; Kuehn, Christian
Dates : 14/05/2018 - 18/05/2018
Event Year : 2018
Event URL : https://conferences.cirm-math.fr/1742.html

Citation Data

DOI : 10.24350/CIRM.V.19402003
Cite this video as: Nualart, Eulalia (2018). Asymptotics for some non-linear stochastic heat equations. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19402003
URI : http://dx.doi.org/10.24350/CIRM.V.19402003

See Also

Bibliography

  • Chen, L., Khoshnevisan, D., & Kim, K. (2017). A boundedness trichotomy for the stochastic heat equation. Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, 53(4), 1991-2004 - https://doi.org/10.1214/16-AIHP780

  • Chen, L., & Huang, J. (2016). Comparison principle for stochastic heat equation on $\mathbb {R}^ d$. - https://arxiv.org/abs/1607.03998

  • Chen, L., & Kim, K. (2017). On comparison principle and strict positivity of solutions to the nonlinear stochastic fractional heat equations. Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, 53(1), 358-388 - http://dx.doi.org/10.1214/15-AIHP719

  • Chen, L. (2016). Spatial asymptotics for the parabolic Anderson models with generalized time–space Gaussian noise. The Annals of Probability, 44(2), 1535-1598 - http://dx.doi.org/10.1214/15-AOP1006

  • Conus, D., Joseph, M., & Khoshnevisan, D. (2013). On the chaotic character of the stochastic heat equation, before the onset of intermitttency. The Annals of Probability, 41(3B), 2225-2260 - https://doi.org/10.1214/11-AOP717

  • Foondun, M., Li, S.-T., & Joseph, M. (2016). An approximation result for a class of stochastic heat equations with colored noise. - https://arxiv.org/abs/1611.06829

  • Mueller, C. (1991). On the support of solutions to the heat equation with noise. Stochastics and Stochastic Reports, 37(4), 225-245 - https://doi.org/10.1080/17442509108833738



Bookmarks Report an error