https://cdn.jwplayer.com/libraries/kxatZa2V.js
Stable models for modular curves in prime level
Loading the player...
|
$X_0(p)$ $X_s^+(p)$ and $X_{ns}^+(p)$ Katz-Mazur model for $X(p)$ Edixhoven semi-stable model for $X(p)$ semi-stable $X_{ns}(p)$ the level 13 case |
Information on the Video
Film maker : Hennenfent, GuillaumeLanguage : English Available date : 30/05/2018 Conference Date : 24/05/2018 Subseries : Research talks arXiv category : Number Theory ; Algebraic Geometry Mathematical Area(s) : Algebraic & Complex Geometry ; Number Theory Format : MP4 (.mp4) - HD Video Time : 00:59:19 Targeted Audience : Researchers Download : https://videos.cirm-math.fr/2018-05-24_Parent.mp4 |
Information on the Event
Event Title : Diophantine geometry / Géométrie diophantienneEvent Organizers : Bosser, Vincent ; Carrizosa, Maria ; Gaudron, Eric ; Habegger, Philipp Dates : 21/05/2018 - 25/05/2018 Event Year : 2018 Event URL : https://conferences.cirm-math.fr/1754.html
Citation Data
DOI : 10.24350/CIRM.V.19408503Cite this video as: Parent, Pierre (2018). Stable models for modular curves in prime level. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19408503 URI : http://dx.doi.org/10.24350/CIRM.V.19408503 |