En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Random orthogonal polynomials: from matrices to point processes

Bookmarks Report an error
Multi angle
Authors : Holcomb, Diane (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : For the commonly studied Hermitian random matrix models there exist tridiagonal matrix models with the same eigenvalue distribution and the same spectral measure $v_{n}$ at the vector $e_{1}$. These tridiagonal matrices give recurrence coefficients that can be used to build the family of random polynomials that are orthogonal with respect to νn. A similar bijection between spectral data and recurrence coefficients also holds for the Unitary ensembles. This time in stead of obtaining a tridiagonal matrix you obtain a sequence $\left \{ \alpha _{k} \right \}_{k=0}^{n-1}$ Szegö coefficients. The random orthogonal polynomials that are generated by this process may then be used to study properties of the original eigenvalue process.
These techniques may be used not just in the classical cases, but also in the more general case of $\beta $-ensembles. I will discuss various ways that orthogonal polynomials techniques may be applied including to show convergence of the Circular $\beta $-ensemble to $Sine_{\beta }$. I will finish by discussing a result on the maximum deviation of the counting function of Sineβ from it expected value. This is related to studying the phases of associated random orthogonal polynomials.

MSC Codes :
60B20 - Random matrices (probabilistic aspects)
15B52 - Random matrices

Additional resources :
https://www.cirm-math.fr/RepOrga/2104/Slides/Holcomb.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 09/05/2019
    Conference Date : 08/04/2019
    Subseries : Research talks
    arXiv category : Probability ; Mathematical Physics
    Mathematical Area(s) : Mathematical Physics ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:42:46
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-04-08_Holcomb.mp4

Information on the Event

Event Title : Chaire Jean-Morlet : Equation intégrable aux données initiales aléatoires / Jean-Morlet Chair : Integrable Equation with Random Initial Data
Event Organizers : Basor, Estelle ; Bufetov, Alexander ; Cafasso, Mattia ; Grava, Tamara ; McLaughlin, Ken
Dates : 08/04/2019 - 12/04/2019
Event Year : 2019
Event URL : https://www.chairejeanmorlet.com/2104.html

Citation Data

DOI : 10.24350/CIRM.V.19514803
Cite this video as: Holcomb, Diane (2019). Random orthogonal polynomials: from matrices to point processes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19514803
URI : http://dx.doi.org/10.24350/CIRM.V.19514803

See Also

Bibliography



Bookmarks Report an error