En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Integrable systems and spectral curves

Bookmarks Report an error
Multi angle
Authors : Eynard, Bertrand (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Usually one defines a Tau function Tau(t_1,t_2,...) as a function of a family of times having to obey some equations, like Miwa-Jimbo equations, or Hirota equations.
Here we shall view times as local coordinates in the moduli-space of spectral curves, and define the Tau-function of a spectral curve Tau(S), in an intrinsic way, independent of a choice of coordinates. Deformations are tangent vectors, and the tangent space is isomorphic to the space of cycles (cf Goldman bracket), so that Hamiltonians can be represented by cycles.
All the integrable system formalism can then be represented geometrically in the space of cycles: the Poisson bracket is the intersection, the conserved quantities are periods, Miwa-Jimbo equations and Seiberg-Witten equations are a mere consequence of the definition, Hirota equation is a vanishing monodromy condition, and Virasoro-W constraint are automatically satisfied by our definition, showing that our Tau-function is also a conformal block. Our definition contains KdV, KP multicomponent KP, Hitchin systems, and probably all known classical integrable systems.

MSC Codes :
37K20 - Relations with algebraic geometry, complex analysis, special functions
60B20 - Random matrices (probabilistic aspects)

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 09/05/2019
    Conference Date : 09/04/2019
    Subseries : Research talks
    arXiv category : Mathematical Physics ; Analysis of PDEs
    Mathematical Area(s) : Mathematical Physics ; Probability & Statistics ; Analysis and its Applications
    Format : MP4 (.mp4) - HD
    Video Time : 00:53:10
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-04-09_Eynard.mp4

Information on the Event

Event Title : Chaire Jean-Morlet : Equation intégrable aux données initiales aléatoires / Jean-Morlet Chair : Integrable Equation with Random Initial Data
Event Organizers : Basor, Estelle ; Bufetov, Alexander ; Cafasso, Mattia ; Grava, Tamara ; McLaughlin, Ken
Dates : 08/04/2019 - 12/04/2019
Event Year : 2019
Event URL : https://www.chairejeanmorlet.com/2104.html

Citation Data

DOI : 10.24350/CIRM.V.19515203
Cite this video as: Eynard, Bertrand (2019). Integrable systems and spectral curves. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19515203
URI : http://dx.doi.org/10.24350/CIRM.V.19515203

See Also

Bibliography



Bookmarks Report an error