En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Torsion groups do not act on 2-dimensional CAT(0) complexes

Bookmarks Report an error
Multi angle
Authors : Przytycki, Piotr (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We show, under mild hypotheses, that if each element of a finitely generated group acting on a 2-dimensional CAT(0) complex has a fixed point, then the action is trivial. In particular, all actions of finitely generated torsion groups on such complexes are trivial. As an ingredient, we prove that the image of an immersed loop in a graph of girth 2π with length not commensurable to π has diameter > π. This is related to a theorem of Dehn on tiling rectangles by squares.
This is joint work with Sergey Norin and Damian Osajda.

Keywords : CAT(0) space; torsion group; rectangle tiling

MSC Codes :
20F65 - Geometric group theory

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 18/07/2019
    Conference Date : 20/06/2019
    Subseries : Research talks
    arXiv category : Group Theory
    Mathematical Area(s) : Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:50:42
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-06-20_Przytycki.mp4

Information on the Event

Event Title : Aspects of Non-Positive and Negative Curvature in Group Theory / Courbure négative et courbure négative ou nulle en théorie des groupes
Event Organizers : Bromberg, Kenneth ; Hilion, Arnaud ; Kazachkov, Ilya ; Sageev, Michah ; Tao, Jing
Dates : 17/06/2019 - 21/06/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/1958.html

Citation Data

DOI : 10.24350/CIRM.V.19539503
Cite this video as: Przytycki, Piotr (2019). Torsion groups do not act on 2-dimensional CAT(0) complexes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19539503
URI : http://dx.doi.org/10.24350/CIRM.V.19539503

See Also

Bibliography



Bookmarks Report an error