En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Algorithms in high-dimensional non-convex landscapes

Bookmarks Report an error
Multi angle
Authors : Zdeborova, Lenka (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Analysis of algorithms in noisy high-dimensional probabilistic problems poses many current challenges. In a subclass of these problems the corresponding challenges can be overcome with the help of a method coming from statistical mechanics. I will review some of the related recent work together with progress on rigorous justification of the corresponding results.

Keywords : machine learning; optimization; gradiant descent; statistical physics

MSC Codes :
62P35 - Applications to physics
68T05 - Learning and adaptive systems
68W25 - Approximation algorithms

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 26/07/2019
    Conference Date : 26/06/2019
    Subseries : Research talks
    arXiv category : Machine Learning ; Condensed Matter ; Statistics Theory ; Disordered Systems and Neural Networks
    Mathematical Area(s) : Computer Science ; Control Theory & Optimization ; Geometry ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:56:41
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-06-26_Zderborova.mp4

Information on the Event

Event Title : AofA: Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms / AofA: méthodes probabilistes, combinatoires et asymptotiques pour l analyse d algorithmes
Event Organizers : Bassino, Frédérique ; Martínez, Conrado ; Salvy, Bruno
Dates : 24/06/2019 - 28/06/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/1940.html

Citation Data

DOI : 10.24350/CIRM.V.19540503
Cite this video as: Zdeborova, Lenka (2019). Algorithms in high-dimensional non-convex landscapes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19540503
URI : http://dx.doi.org/10.24350/CIRM.V.19540503

See Also

Bibliography

  • DIA, Mohamad, MACRIS, Nicolas, KRZAKALA, Florent, et al. Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula. In : Advances in Neural Information Processing Systems. 2016. p. 424-432 - http://papers.nips.cc/paper/6379-mutual-information-for-symmetric-rank-one-matrix-estimation-a-proof-of-the-replica-formula

  • LESIEUR, Thibault, KRZAKALA, Florent, et ZDEBOROVÁ, Lenka. Constrained low-rank matrix estimation: Phase transitions, approximate message passing and applications. Journal of Statistical Mechanics: Theory and Experiment, 2017, vol. 2017, no 7, p. 073403. - https://doi.org/10.1088/1742-5468/aa7284

  • LESIEUR, Thibault, MIOLANE, Léo, LELARGE, Marc, et al. Statistical and computational phase transitions in spiked tensor estimation. In : 2017 IEEE International Symposium on Information Theory (ISIT). IEEE, 2017. p. 511-515. - https://doi.org/10.1109/ISIT.2017.8006580

  • MANNELLI, Stefano Sarao, BIROLI, Giulio, CAMMAROTA, Chiara, et al. Marvels and pitfalls of the langevin algorithm in noisy high-dimensional inference. arXiv preprint arXiv:1812.09066, 2018. - https://arxiv.org/abs/1812.09066

  • MANNELLI, Stefano Sarao, KRZAKALA, Florent, URBANI, Pierfrancesco, et al. Passed & Spurious: analysing descent algorithms and local minima in spiked matrix-tensor model. arXiv preprint arXiv:1902.00139, 2019. - https://arxiv.org/abs/1902.00139



Bookmarks Report an error