En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Learning interpretable networks from multivariate information in biological and clinical data

Bookmarks Report an error
Multi angle
Authors : Isambert, Hervé (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The reconstruction of graphical models (or networks) has become ubiquitous to analyze the rapidly expanding, information-rich data of biological or clinical interest. I will outline some network reconstruction methods and applications to large scale datasets. In particular, our group has developped information-theoretic methods and machine learning tools to infer and analyze interpretable graphical models from large scale genomics data (single cell transcriptomics, tumor expression and mutation data) as well as clinical data (analysis of medical records from breast cancer patients, Institut Curie, and from elderly patients with cognitive disorders, La Pitie-Salpetriere).

Keywords : machine learning

MSC Codes :
68T05 - Learning and adaptive systems
92D10 - Genetics

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 23/03/2020
    Conference Date : 03/03/2020
    Subseries : Research talks
    arXiv category : Quantitative Biology ; Computer Science
    Mathematical Area(s) : Numerical Analysis & Scientific Computing ; Computer Science ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 01:38:23
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-03-03_Isambert.mp4

Information on the Event

Event Title : Thematic Month Week 5: Networks and Molecular Biology / Mois thématique Semaine 5 : Réseaux et biologie moléculaire
Event Organizers : Baudot, Anais ; Hubert, Florence ; Mossé, Brigitte ; Rémy, Elisabeth ; Tichit, Laurent ; Vignes, Matthieu
Dates : 02/03/2020 - 06/03/2020
Event Year : 2020
Event URL : https://conferences.cirm-math.fr/2305.html

Citation Data

DOI : 10.24350/CIRM.V.19619803
Cite this video as: Isambert, Hervé (2020). Learning interpretable networks from multivariate information in biological and clinical data. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19619803
URI : http://dx.doi.org/10.24350/CIRM.V.19619803

See Also

Bibliography

  • SELLA, Nadir, VERNY, Louis, UGUZZONI, Guido, et al. MIIC online: a web server to reconstruct causal or non-causal networks from non-perturbative data. Bioinformatics, 2018, vol. 34, no 13, p. 2311-2313. - https://doi.org/10.1093/bioinformatics/btx844

  • VERNY, Louis, SELLA, Nadir, AFFELDT, Séverine, et al. Learning causal networks with latent variables from multivariate information in genomic data. PLoS computational biology, 2017, vol. 13, no 10, p. e1005662. - https://doi.org/10.1371/journal.pcbi.1005662

  • EVLAMPIEV, Kirill et ISAMBERT, Hervé. Conservation and topology of protein interaction networks under duplication-divergence evolution. Proceedings of the National Academy of Sciences, 2008, vol. 105, no 29, p. 9863-9868. - https://doi.org/10.1073/pnas.0804119105

  • SINGH, Param Priya, AFFELDT, Séverine, CASCONE, Ilaria, et al. On the expansion of “dangerous” gene repertoires by whole-genome duplications in early vertebrates. Cell reports, 2012, vol. 2, no 5, p. 1387-1398. - https://doi.org/10.1016/j.celrep.2012.09.034

  • SINGH, Param Priya, ARORA, Jatin, et ISAMBERT, Hervé. Identification of ohnolog genes originating from whole genome duplication in early vertebrates, based on synteny comparison across multiple genomes. PLoS computational biology, 2015, vol. 11, no 7. - https://dx.doi.org/10.1371%2Fjournal.pcbi.1004394

  • MAKINO, Takashi et MCLYSAGHT, Aoife. Ohnologs in the human genome are dosage balanced and frequently associated with disease. Proceedings of the National Academy of Sciences, 2010, vol. 107, no 20, p. 9270-9274. - https://doi.org/10.1073/pnas.0914697107

  • HUMINIECKI, Lukasz et HELDIN, Carl Henrik. 2R and remodeling of vertebrate signal transduction engine. BMC biology, 2010, vol. 8, no 1, p. 146. - https://doi.org/10.1186/1741-7007-8-146

  • SINGH, Param Priya, AFFELDT, Séverine, CASCONE, Ilaria, et al. On the expansion of “dangerous” gene repertoires by whole-genome duplications in early vertebrates. Cell reports, 2012, vol. 2, no 5, p. 1387-1398. - https://doi.org/10.1016/j.celrep.2012.09.034

  • SINGH, Param Priya, AFFELDT, Severine, MALAGUTI, Giulia, et al. Human dominant disease genes are enriched in paralogs originating from whole genome duplication. PLoS computational biology, 2014, vol. 10, no 7. - https://journals.plos.org/ploscompbiol/article/file?type=printable&id=10.1371/journal.pcbi.1003754



Imagette Video

Bookmarks Report an error