En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

How to estimate a density on a spider web ?

Bookmarks Report an error
Virtualconference
Authors : Picard, Dominique (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract :
MSC Codes :

Additional resources :
https://www.cirm-math.fr/RepOrga/2146/Slides/Picard.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 15/06/2020
    Conference Date : 02/06/2020
    Subseries : Research talks
    arXiv category : Statistics Theory
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:36:40
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/ 2020-06-02_Picard.mp4

Information on the Event

Event Title : Mathematical Methods of Modern Statistics 2 / Méthodes mathématiques en statistiques modernes 2
Event Organizers : Bogdan, Malgorzata ; Graczyk, Piotr ; Panloup, Fabien ; Proïa, Frédéric ; Roquain, Etienne
Dates : 15/06/2020 - 19/06/2020
Event Year : 2020
Event URL : https://www.cirm-math.com/cirm-virtual-...

Citation Data

DOI : 10.24350/CIRM.V.19642103
Cite this video as: Picard, Dominique (2020). How to estimate a density on a spider web ?. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19642103
URI : http://dx.doi.org/10.24350/CIRM.V.19642103

See Also

Bibliography

  • BALDI, Paolo, KERKYACHARIAN, Gérard, MARINUCCI, Domenico, et al. Adaptive density estimation for directional data using needlets. The Annals of Statistics, 2009, vol. 37, no 6A, p. 3362-3395. - http://dx.doi.org/10.1214/09-AOS682

  • CASTILLO, Ismaël, KERKYACHARIAN, Gérard, et PICARD, Dominique. Thomas Bayes' walk on manifolds. Probability Theory and Related Fields, 2014, vol. 158, no 3-4, p. 665-710. - https://doi.org/10.1007/s00440-013-0493-0

  • COIFMAN, Ronald R. et WEISS, Guido. Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes. Number 242 in Lecture Notes in Math. 1971. - http://dx.doi.org/10.1007/BFb0058946

  • COULHON, Thierry, KERKYACHARIAN, Gerard, et PETRUSHEV, Pencho. Heat kernel generated frames in the setting of Dirichlet spaces. Journal of Fourier Analysis and Applications, 2012, vol. 18, no 5, p. 995-1066. - https://doi.org/10.1007/s00041-012-9232-7

  • DONOHO, David L., JOHNSTONE, Iain M., KERKYACHARIAN, Gérard, et al. Density estimation by wavelet thresholding. The Annals of Statistics, 1996, p. 508-539. - http://dx.doi.org/10.1214/aos/1032894451

  • FRAZIER, Michael, FRAZIER, Michael W., JAWERTH, Björn, et al. Littlewood-Paley theory and the study of function spaces. American Mathematical Soc., 1991. - http://dx.doi.org/10.1090/cbms/079

  • HÄRDLE, Wolfgang, KERKYACHARIAN, Gerard, PICARD, Dominique, et al. Wavelets, approximation, and statistical applications. Springer Science & Business Media, 2012. - http://dx.doi.org/10.1007/978-1-4612-2222-4

  • KERKYACHARIAN, Gerard et PETRUSHEV, Pencho. Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. Transactions of the American Mathematical Society, 2015, vol. 367, no 1, p. 121-189. - http://dx.doi.org/10.1090/S0002-9947-2014-05993-X

  • KERKYACHARIAN, Gérard, PETRUSHEV, Pencho, PICARD, Dominique, et al. Needlet algorithms for estimation in inverse problems. Electronic Journal of Statistics, 2007, vol. 1, p. 30-76. - http://dx.doi.org/10.1214/07-EJS014

  • KERKYACHARIAN, Gerard, PETRUSHEV, Pencho, et XU, Yuan. Gaussian Bounds for the Weighted Heat Kernels on the Interval, Ball, and Simplex. Constructive Approximation, 2020, vol. 51, no 1, p. 73-122. - https://doi.org/10.1007/s00365-019-09458-1

  • KERKYACHARIAN, Gerard, PETRUSHEV, Pencho, et XU, Yuan. Gaussian bounds for the heat kernels on the ball and simplex: Classical approach. Studia Mathematica, 2020, vol. 250, p. 235-252. - http://dx.doi.org/10.4064/sm180423-13-10



Bookmarks Report an error