En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Modeling of time series using random forests: theoretical developments

Bookmarks Report an error
Virtualconference
Authors : Davis, Richard (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : In this paper we study asymptotic properties of random forests within the framework of nonlinear time series modeling. While random forests have been successfully applied in various fields, the theoretical justification has not been considered for their use in a time series setting. Under mild conditions, we prove a uniform concentration inequality for regression trees built on nonlinear autoregressive processes and, subsequently, use this result to prove consistency for a large class of random forests. The results are supported by various simulations. (This is joint work with Mikkel Slot Nielsen.)

Keywords : Markov processes; nonlinear autoregressive models; nonparametric regression; random forests

MSC Codes :
60G10 - Stationary processes
60J05 - Markov processes with discrete parameter
62G10 - Nonparametric hypothesis testing
62M05 - Markov processes: estimation
62M10 - Time series, auto-correlation, regression, etc.

Additional resources :
https://www.cirm-math.fr/RepOrga/2233/Slides/Davis-CIRM2020.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 09/10/2020
    Conference Date : 14/09/2020
    Subseries : Research talks
    arXiv category : Machine Learning ; Statistics Theory
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:44:57
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-09-14_Davis.mp4

Information on the Event

Event Title : New Results on Time Series and their Statistical Applications / Séries chronologiques: nouveaux résultats et applications statistiques
Event Organizers : Bardet, Jean-Marc ; Eckley, Idris ; Fokianos, Konstantinos ; Neumann, Michael H. ; Philippe, Anne
Dates : 14/09/2020 - 19/09/2020
Event Year : 2020
Event URL : https://conferences.cirm-math.fr/2233.html

Citation Data

DOI : 10.24350/CIRM.V.19654803
Cite this video as: Davis, Richard (2020). Modeling of time series using random forests: theoretical developments. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19654803
URI : http://dx.doi.org/10.24350/CIRM.V.19654803

See Also

Bibliography

  • DAVIS, Richard A. et NIELSEN, Mikkel S. Modeling of time series using random forests: theoretical developments. arXiv preprint arXiv:2008.02479, 2020. - https://arxiv.org/abs/2008.02479



Bookmarks Report an error