En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Automorphisms of curve and pants complexes in profinite content

Bookmarks Report an error
Multi angle
Authors : Funar, Louis (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Pants complexes of large surfaces were proved to be vigid by Margalit. We will consider convergence completions of curve and pants complexes and show that some weak four of rigidity holds for the latter. Some key tools come from the geometry of Deligne Mumford compactification of moduli spaces of curves with level structures.

Keywords : pants complex; curve complex; convergence completion; moduli space

MSC Codes :
20F34 - Fundamental groups and their automorphisms
57M10 - Covering spaces
14D23 - Stacks and moduli problems

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 23/10/2020
    Conference Date : 06/10/2020
    Subseries : Research talks
    arXiv category : Group Theory ; Algebraic Geometry ; Geometric Topology
    Mathematical Area(s) : Algebra ; Geometry ; Algebraic & Complex Geometry ; Topology
    Format : MP4 (.mp4) - HD
    Video Time : 01:03:43
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-10-06_Funar.mp4

Information on the Event

Event Title : Teichmüller Theory: Classical, Higher, Super and Quantum / Théorie de Teichmüller : classique, supérieure, super et quantique
Event Organizers : Ohshika, Ken'ichi ; Papadopoulos, Athanase ; Penner, Robert C. ; Wienhard, Anna
Dates : 05/10/2020 - 10/10/2020
Event Year : 2020
Event URL : https://conferences.cirm-math.fr/2216.html

Citation Data

DOI : 10.24350/CIRM.V.19656303
Cite this video as: Funar, Louis (2020). Automorphisms of curve and pants complexes in profinite content. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19656303
URI : http://dx.doi.org/10.24350/CIRM.V.19656303

See Also

Bibliography

  • BOGGI, Marco, FUNAR, Louis, et LOCHAK, Pierre. Automorphisms of procongruence curve complexes and anabelian properties of moduli stacks of curves. arXiv preprint arXiv:2004.04135, 2020. - https://arxiv.org/abs/2004.04135



Bookmarks Report an error