En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Derivative pricing, simulation from non-uniform distributions - lecture 3

Bookmarks Report an error
Virtualconference
Authors : Ökten, Giray (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The models of Bachelier and Samuelson will be introduced. Methods for generating number sequences from non-uniform distributions, such as inverse transformation and acceptance rejection, as well as generation of stochastic processes will be discussed. Applications to pricing options via rendomized quasi-Monte Carlo methods will be presented.

MSC Codes :
65C05 - Monte Carlo methods
65C20 - Models (numerical methods)
91G60 - Numerical methods in mathematical finance

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 02/11/2020
    Conference Date : 02/11/2020
    Subseries : Research School
    arXiv category : Numerical Analysis ; Quantitative Finance
    Mathematical Area(s) : Numerical Analysis & Scientific Computing ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:52:12
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-10-27_Okten 3.mp4

Information on the Event

Event Title : Jean-Morlet Chair 2020 - Research School: Quasi-Monte Carlo Methods and Applications / Chaire Jean-Morlet 2020 - Ecole: Méthode de quasi-Monte-Carlo et applications
Event Organizers : Rivat, Joël ; Thonhauser, Stefan ; Tichy, Robert
Dates : 02/11/2020 - 07/11/2020
Event Year : 2020
Event URL : https://www.chairejeanmorlet.com/2255.html

Citation Data

DOI : 10.24350/CIRM.V.19679503
Cite this video as: Ökten, Giray (2020). Derivative pricing, simulation from non-uniform distributions - lecture 3. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19679503
URI : http://dx.doi.org/10.24350/CIRM.V.19679503

See Also

Bibliography



Bookmarks Report an error