En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Stability of propagation fronts in congestion models

Bookmarks Report an error
Multi angle
Authors : Dalibard, Anne-Laure (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The purpose of this talk is to present two 1d congestion models: a soft congestion model with a singular pressure, and a hard congestion model in which the dynamic is different in the congested and non-congested zone (incompressible vs. compressible dynamic). The hard congested model is the limit of the soft one as the parameter within the singular presure vanishes.
For each model, we prove the existence of traveling waves, and we study their stability. This is a joint work with Charlotte Perrin.

Keywords : congestion problem; free boundary; stability of traveling waves

MSC Codes :
35B35 - Stability of solutions of PDE
35Q35 - PDEs in connection with fluid mechanics
35R35 - Free boundary problems

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 10/11/2020
    Conference Date : 27/10/2020
    Subseries : Research talks
    arXiv category : Analysis of PDEs
    Mathematical Area(s) : PDE
    Format : MP4 (.mp4) - HD
    Video Time : 00:54:23
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-10-27_Dalibard.mp4

Information on the Event

Event Title : Vorticity, Rotation and Symmetry (V) – Global Results and Nonlocal Phenomena / Vorticité, rotation et symétrie (V) – Résultats globaux et phénomènes non locaux
Event Organizers : Danchin, Raphaël ; Farwig, Reinhard ; Necasova, Sarka ; Neustupa, Jiri
Dates : 26/10/2020 - 30/10/2020
Event Year : 2020
Event URL : https://conferences.cirm-math.fr/2166.html

Citation Data

DOI : 10.24350/CIRM.V.19678503
Cite this video as: Dalibard, Anne-Laure (2020). Stability of propagation fronts in congestion models. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19678503
URI : http://dx.doi.org/10.24350/CIRM.V.19678503

See Also

Bibliography

  • DALIBARD, Anne-Laure et PERRIN, Charlotte. Existence and stability of partially congested propagation fronts in a one-dimensional Navier-Stokes model. arXiv preprint arXiv:1902.02982, 2019. - https://arxiv.org/abs/1902.02982



Bookmarks Report an error