En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Pseudorandomness at prime times and digits of Mersenne numbers

Bookmarks Report an error
Virtualconference
Authors : Shparlinski, Igor (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We consider two common pseudorandom number generators constructed from iterations of linear and Möbius maps
$x \mapsto gx$ and $ x \mapsto (ax+b)/(cx+d)$
over a residue ring modulo an integer q ≥ 2, which are known as congruential and inversive generators, respectively. There is an extensive literature on the pseudorandomness of elements $u_{n}, n=1,2,...$, of the corresponding orbits. In this talk we are interested in what happens in these orbits at prime times, that is, we study elements $u_{p}$, $p = 2, 3, . . .$, where $p$ runs over primes.
We give a short survey of previous results on the distribution of $u_{p}$ for the above maps and then:
- Explain how B. Kerr, L. Mérai and I. E. Shparlinski (2019) have used a method of N. M. Korobov (1972) to study the congruential generator on primes modulo a large power of a fixed prime, e.g. $q=3^{\gamma }$ with a large $\gamma$. We also give applications of this result to digits of Mersenne numbers $2^{p}-1$.
- Present a result of L. Mérai and I. E. Shparlinski (2020) on the distribution of the inversive generator on primes modulo a large prime, q. The proof takes advantage of the flexibility of Heath-Brown's identity, while Vaughan's identity does not seem to be enough for our purpose. We also pose several open questions and discuss links to Sarnak's conjecture on pseudorandomness of the Möbius function.

MSC Codes :

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 01/12/2020
    Conference Date : 25/11/2020
    Subseries : Research talks
    arXiv category : Number Theory
    Mathematical Area(s) : Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:51:44
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-11-25_Shparlinski.mp4

Information on the Event

Event Title : Jean-Morlet Chair 2020 - Conference: Diophantine Problems, Determinism and Randomness / Chaire Jean-Morlet 2020 - Conférence : Problèmes diophantiens, déterminisme et aléatoire
Event Organizers : Rivat, Joël ; Tichy, Robert
Dates : 23/11/2020 - 27/11/2020
Event Year : 2020
Event URL : https://www.chairejeanmorlet.com/2256.html

Citation Data

DOI : 10.24350/CIRM.V.19689303
Cite this video as: Shparlinski, Igor (2020). Pseudorandomness at prime times and digits of Mersenne numbers. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19689303
URI : http://dx.doi.org/10.24350/CIRM.V.19689303

See Also

Bibliography



Bookmarks Report an error